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A problem with single particles

Single particle dispersion has generic limits:

limt→0 K = ν2t

and
limt→∞ K = ν2TL

→ True for a variety of flows

Not useful for distinguishing flow characteristics (large scale
turbulence, small scale, time dependent flow, etc.)

Joe LaCasce University of Oslo Lagrangian Lecture III



Introduction
Relative dispersion

Turbulence
Observations

PDFs

Tracer spread

Joe LaCasce University of Oslo Lagrangian Lecture III



Introduction
Relative dispersion

Turbulence
Observations

PDFs

Tracer spread

First moment reflects the motion of the center of mass:

d

dt
< x >=< U >

Previously, found the mean of x2:

d

dt
< x2 >=< xU > +2Kx

For a constant mean flow, U = a:

< x2 >= a2t2 + 2Kx t
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But the proper second moment (the variance) is:

D =< (x− < x >)2 >=< x2 > − < x >2

For the constant mean flow, this is:

D = a2t2 + 2Kx t − a2t2 = 2Kx t

So the variance only increases due to diffusion.
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However, if U = a + by , we have:

D = a2t2 +
2

3
b2Ky t3 + 2Kx t − a2t2

=
2

3
b2Ky t3 + 2Kx t

→ The shear increases the variance
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Tracer spread

Can show that for a cloud:

< (~r− <~r >)2 >=< (ri − rj)
2 >

• The variance is equal to the mean square separation of all pairs
of particles in the cloud

Can measure tracer spreading with pairs of drifters

LaCasce (2008)
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Richardson (1926): Atmospheric diffusion shown on a
distance-neighbour graph
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Richardson (1926)

∂

∂t
C =

∂

∂y
(κ

∂

∂y
C )

Richardson, 1926
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Diffusivity

Richardson (1926):
κ ∝ y 4/3
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Fokker-Plank equation

∂

∂t
C =

∂

∂y
(βy 4/3∂C

∂y
)
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Two-particle statistics

Relative dispersion:

< δr 2 >≡ 1

Npairs

∑
i 6=j

|~ri −~rj |2

Relative diffusivity:

K2 =
1

2

d

dt
< δr 2 >

=< δv(t) δr(t) >

=

∫ t

0
< δv(t)δv(t ′) > dt ′− < δv(t)δr(0) >

≈
∫ t

0
< δv(t)δv(t ′) > dt ′
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Uncorrelated motion

At large separations, the pair velocities are uncorrelated
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Uncorrelated motion

Assuming a homogeneous flow:

< δv(t)δv(t ′) > =< (vi (t)− vj(t))(vi (t ′)− vj(t ′)) >

≈< vi (t)vi (t ′) > + < vj(t)vj(t ′) >

= 2ν2

This implies:
limt→∞ K2 = 2K1

→ The single particle diffusivity is recovered at long times
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Relative diffusivity

However we can’t really conclude:

limt→0 < δv(t)δv(t ′) >= Const.

→ The initial behavior reflects statistics of the flow itself
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Structure functions

For a homogeneous flow:

δvL(r) = δvE (r)
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Structure functions

This allows us to exploit turbulence theory to predict the dispersion

In fact Kolmogorov’s (1941) theory was formulated in terms of
structure functions:

Sn(r) ≡< |~u(x + r)− ~u(x)|n >

In the inertial range of 3-D turbulence, the energy dissipation rate,
ε, is assumed to be constant across scales
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Structure functions

The dissipation rate has units:

ε ∝ ∂E

∂t
∝ m2

sec3

If this is the only important parameter:

S2 =< |~u(x + r)− ~u(x)|2 >∝ ε2/3r 2/3

This is Kolmogorov’s “2/3 Law”
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3-D turbulence

For homogeneous flows, the Lagrangian velocity difference behaves
the same:

< δvl(r)2 >∝ ε2/3r 2/3

Similarly, the diffusivity is:

K2 ∝
m2

sec
∝ ε1/3r 4/3

→ Consistent with Richardson’s (1926) observations

Obukhov (1941), Batchelor (1952)
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2-D turbulence
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2-D turbulence

In the energy cascade:

K2 ∝ ε1/3r 4/3

In the enstrophy cascade:

η ∝ ∂Z

∂t
∝ 1

sec3

So:
< δvl(r)2 >∝ η2/3r 2

and:

K2 ∝
m2

sec
∝ η1/3r 2
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Relative dispersion

These have very different dispersion. If:

K2 =
1

2

d

dt
< r 2 >∝ ε1/3r 4/3

then can show:
< r 2 >∝ εt3

But if:

K2 =
1

2

d

dt
< r 2 >∝ η1/3r 2

then find:
< r 2 >∝ exp(8η1/3t)
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General relation

It’s possible to derive the diffusivity given any power law spectrum
for KE. If E (k) ∝ k−n, then:

K2 ∝ r (n+1)/2

However, if the spectrum is steeper than k−3, then:

K2 ∝ r 2

and the relative dispersion increases exponentially in time

Bennett (1984)
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Some implications

• Relative dispersion applies to error growth—if the particle is
moved a small distance from its initial position, how quickly does
the error grow?

• Exponential growth implies a sensitive dependence on initial
conditions. This is Lagrangian chaos

• Relative dispersion is exponential at sub-grid scales in models
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Loch Long, Scotland

Richardson and Stommel, 1948
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Surface dispersion

Okubo, 1970
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Atmospheric spectra

Nastrom and Gage, 1985
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EOLE

483 balloons in the Southern Hemisphere stratosphere
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EOLE balloons

Morel and Larcheveque, 1974
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TWERLE balloons

Er-el and Peskin, 1981
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Surface drifters
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SCULP drifters: Gulf of Mexico

140 “chance pairs” with r0 = 1km
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SCULP drifters: Gulf of Mexico

LaCasce and Ohlmann (2003)
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Application: Gulf of Mexico

National Geographic, April 26, 2010
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POLEWARD drifters: Nordic Seas

93 “original pairs” with r0 = 2km
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POLEWARD drifters: Nordic Seas

Koszalka, LaCasce, Orvik (2009)
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EOLE reanalysis

But grumblings in the audience...

• Using the “finite scale Lyapunov exponent” (FSLE), Lacorata et
al. (2003) suggested that the EOLE dispersion was not exponential
but in line with Richardson (K2 ∝ r 4/3)

• With the FSLE, Lumpkin and Ellipot (2010) found only
Richardson dispersion for drifters in the western Atlantic
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SCULP dispersion
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PDFs

Previous studies based primarily on dispersion, the second moment
of the displacements

The FSLE is similarly a single average number (time) for drifters

Get more information from the probability density function (PDF)
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Richardson (1926) proposed that smoke dispersion could be
modelled using:

∂

∂t
C = ∇ · (K2(r)∇C )

Cloud dispersion is equivalent to pair dispersion. So the PDF of
the pair separations, p(r , t), obeys a Fokker-Plank (FP) equation:

∂

∂t
p = ∇ · (K2(r)∇p)

• Can solve the FP equation for the inertial ranges in 2D

Joe LaCasce University of Oslo Lagrangian Lecture III



Introduction
Relative dispersion

Turbulence
Observations

PDFs

Two-dimensional turbulence

• Inverse Energy cascade

E (κ) ∝ κ−5/3, κ = ε1/3r 4/3

Asymptotic solution:

p(r , t) = (
3

2
)5 1

2εt3
exp(− 9r 2/3

4ε1/3t
)

Dispersion: < r 2 >= 5.2675 ε t3

Richardson, 1926; Boffetta and Celani, 2000; LaCasce, 2010
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Two-dimensional turbulence

• Enstrophy cascade

E (κ) ∝ κ−3, κ = η1/3r 2

Solution:

p(r , t) =
1

2(πη1/3t)1/2 r 2
0

exp(− [ln(r/r0) + 2η1/3t]2

4η1/3t
)

Dispersion: < r 2 >= r 2
0 exp(8η1/3t)

Lundgren, 1981; Bennett, 2006; LaCasce, 2010
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Large scales

• Uncorrelated motion

κ = const.

Asymptotic solution:

p(r , t) =
1

κt
exp(− r 2

2κt
)

Dispersion: < r 2 >= 2κt
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2-D turbulence model
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2-D turbulence model

Solves the vorticity equation:

∂

∂t
ζ + J(ψ, ζ) = F +D (1)

1) Energy cascade: κF = [100, 120]
D = ν∇−2ζ, exponential cut-off filter

2) Enstrophy cascade: κF = [1, 5]
D → exponential filter

Doubly-periodic, 5122 grid points, 2000 particles
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Energy cascade
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Enstrophy cascade
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EOLE balloons

426 pairs at 200 mb, r0 = 25km
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SCULP drifters

188 pairs, r0 = 2km
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POLEWARD drifters, Nordic Seas

93 pairs, r0 = 2km
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Summary, Lecture III

Relative dispersion concerns pairs of particles and reflects the
spread of a cloud of tracer

For homogeneous flows, relative dispersion depends on the
Eulerian energy spectrum

Observations support exponential growth below the
deformation radius in the lower stratosphere and at the ocean
surface

Implies the sub-deformation scale energy spectrum is at least
as steep as κ−3

Important for parameterizations and for simulating tracer
spreading, e.g. oil and volcanic ash
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