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Introduction

A problem with single particles

Single particle dispersion has generic limits:
lime—o K = vt

and
lime—oo K = 12T}

— True for a variety of flows

Not useful for distinguishing flow characteristics (large scale
turbulence, small scale, time dependent flow, etc.)

Joe LaCasce University of Oslo Lagrangian Lecture Il



Introduction

Tracer spread
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Introduction

Tracer spread

First moment reflects the motion of the center of mass:

d
I<X>_<U>

Previously, found the mean of x2:

d
7 < x? >=< xU > +2K,

For a constant mean flow, U = a:
< x?2 >= 2%t% + 2K, t
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Introduction

Tracer spread

But the proper second moment (the variance) is:

D=<(x—<x>)P>=<x*>— < x>?

For the constant mean flow, this is:

D = 8%t% + 2K, t — a°t? = 2K, t

So the variance only increases due to diffusion.
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Introduction

Tracer spread

However, if U = a+ by, we have:

2
D = 2%t? + 5b2Kyt3 + 2K, t — a’t?

2
= §b2Kyt3 + 2K, t

— The shear increases the variance
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Introduction

Tracer spread

Can show that for a cloud:
— - 2 _ : . 2
<(F—<TP>) >=<(ri—nr) >

e The variance is equal to the mean square separation of all pairs
of particles in the cloud

Can measure tracer spreading with pairs of drifters

LaCasce (2008)
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Relative dispersion

Richardson (1926): Atmospheric diffusion shown on a
distance-neighbour graph
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Relative dispersion

Richardson (1926)

1o} o, 0
Richardson, 1926
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Relative dispersion

Diffusivity

Richardson (1926):
K o y*/3
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Relative dispersion

Fokker-Plank equation
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Relative dispersion

Two-particle statistics

Relative dispersion:

<o6r? >= 7 — 7|2
pairs i£j
Relative diffusivity:
1d
Ko=-— <6r*>
2= 2at =

=< ov(t)dr(t) >

_ /t < Sv(t)Su(t)) > di'— < 8v(t)5r(0) >
0

~ /t < dv(t)ov(t') > dt’
0
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Relative dispersion

Uncorrelated motion

At large separations, the pair velocities are uncorrelated
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Relative dispersion

Uncorrelated motion

Assuming a homogeneous flow:

< Ov(t)ov(t') > =< (vi(t) — v;(t))(vi(t') — v(t')) >
~< vi(t)vi(t) > + < vi(t)vi(t) >
=202
This implies:

/imt_m, K2 = 2K1

— The single particle diffusivity is recovered at long times
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Relative dispersion

Relative diffusivity

However we can't really conclude:

lims—o < dv(t)dv(t') >= Const.

— The initial behavior reflects statistics of the flow itself
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Turbulence

Structure functions

For a homogeneous flow:

dvi(r) = dve(r)
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Turbulence

Structure functions

This allows us to exploit turbulence theory to predict the dispersion

In fact Kolmogorov's (1941) theory was formulated in terms of
structure functions:

Sn(r) =< |d(x + r) — a(x)|" >

In the inertial range of 3-D turbulence, the energy dissipation rate,
€, is assumed to be constant across scales
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Turbulence

Structure functions

E(ic) &P

7 K

‘ b
Energy injected Dissipation
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Turbulence

Structure functions

The dissipation rate has units:

O0E m?

€X — X ——=
ot  sec3

If this is the only important parameter:

So =< |i(x + r) — U(x)|? >x €/3r%/3

This is Kolmogorov's “2/3 Law”
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Turbulence

3-D turbulence

For homogeneous flows, the Lagrangian velocity difference behaves
the same:
< Ov(r)? >oc /3723

Similarly, the diffusivity is:

m2
Ky x — 1/3,4/3
sec

— Consistent with Richardson's (1926) observations

Obukhov (1941), Batchelor (1952)
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Turbulence

2-D turbulence

—5/3
K

E(x)

%

Energy injected
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Turbulence

2-D turbulence

In the energy cascade:

Ky x 1/3/4/3
In the enstrophy cascade:
0Z 1
X — X —%
T8 ™ secs
So:
< 8vi(r)? >oc n?/3r?
and:

2
m
Ky x — 7)1/3r2
sec
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Turbulence

Relative dispersion

These have very different dispersion. If:

1d 1/3,4/3
Ky = > dt < r? > 3
then can show:
< r2 > et3
But if: 1d
1/3 .2
K> = 54t < r? > n'r
then find:

< r? > exp(8n'/3t)
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Turbulence

General relation

It's possible to derive the diffusivity given any power law spectrum
for KE. If E(k) o< k™", then:

Ky o r(n+1)/2

However, if the spectrum is steeper than k=3, then:
K2 X r2

and the relative dispersion increases exponentially in time

Bennett (1984)
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Turbulence

Some implications

e Relative dispersion applies to error growth—if the particle is
moved a small distance from its initial position, how quickly does
the error grow?

e Exponential growth implies a sensitive dependence on initial
conditions. This is Lagrangian chaos

e Relative dispersion is exponential at sub-grid scales in models
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Observations

. Scotland

In the sea we used floats of parsnip because it is
easily visible, and because it is almost completely
immersed so as not to catch the wind which, moreover,
was slight. The floats were about 2 cm in diameter.

| An optical device was used for measuring the distance
2in a fixed azimuth. The observations were made in
latitude 56°0’N, longitude 4°54'W from Blairmore
Pier, Loch Long, Scotland, on 6 January 1948, where
the sea water was about two meters deep. In order to
eliminate any change in F(I) with time, we observed
alternately with large and small /,, as may be seen
from table 1. From equation (6) the function F()
was computed separately for the wide and close

pairs;
wide palrs close pairs unit
] 187.7 26.7 cm
F(y 84.3 6.4 cm? sec™t

The power law which fits these data is

F(I) = 0.07 v, 9)

Richardson and Stommel, 1948
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Observations

Surface dispersion
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Observations

Atmospheric spectra
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Observations

483 balloons in the Southern Hemisphere stratosphere
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Observations

EOLE balloons
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Fic. 8. Root mean square separation of the original pairs of
balloons refeased during the EOLE experiment, as 4 fanction of
time after launch

Morel and Larcheveque, 1974
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Observations

TWERLE balloons
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FIG, 6. The quare relative

for midlatitudes releases on a log-linear scale. The straight
line indicates an exponential region.

Er-el and Peskin, 1981
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Observations

Surface drifters
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Observations

SCULP drifters: Gulf of Mexico

140 “chance pairs” with rp = 1km
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Observations

SCULP drifters: Gulf of Mexico
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LaCasce and Ohlmann (2003)
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Observations

Application: Gulf of Mexico

National Geographic, April 26, 2010
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Observations

POLEWARD drifters: Nordic Seas

93 “original pairs” with rp = 2km
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Observations

POLEWARD drifters: Nordic Seas

POLEWARD pair dispersion
T T

Data
exp(BH3]
3

- =t

Time (days)
Koszalka, LaCasce, Orvik (2009)
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Observations

EOLE reanalysis

But grumblings in the audience...
e Using the “finite scale Lyapunov exponent” (FSLE), Lacorata et
al. (2003) suggested that the EOLE dispersion was not exponential

but in line with Richardson (Kj o r*/3)

e With the FSLE, Lumpkin and Ellipot (2010) found only
Richardson dispersion for drifters in the western Atlantic
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Observations

SCULP dispersion
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Previous studies based primarily on dispersion, the second moment
of the displacements

The FSLE is similarly a single average number (time) for drifters

Get more information from the probability density function (PDF)
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PDFs

Richardson (1926) proposed that smoke dispersion could be
modelled using:

0
5:C =V (K(n)VC)

Cloud dispersion is equivalent to pair dispersion. So the PDF of
the pair separations, p(r, t), obeys a Fokker-Plank (FP) equation:

5:P =V (Ka(r)Vp)

e Can solve the FP equation for the inertial ranges in 2D
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PDFs

Two-dimensional turbulence

e Inverse Energy cascade

E(k) x 5723, K =e/343
Asymptotic solution:

35 1 9r%/3
P(r, t) - (E) @ eXp(_4€1/3t)

Dispersion: < r? >=5.2675¢t3

Richardson, 1926; Boffetta and Celani, 2000; LaCasce, 2010
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PDFs

Two-dimensional turbulence

e Enstrophy cascade

E(rk) x k73, K =nt3r?
Solution:
_ 1 [In(r/r0) + 2n*/3¢]?
p(ra t) - 2(7T771/3t)1/2 rg exp(— 4771/3t

Dispersion: < r? >= réexp(8n'/3t)
Lundgren, 1981; Bennett, 2006; LaCasce, 2010

Joe LaCasce University of Oslo Lagrangian Lecture Il



Large scales

e Uncorrelated motion

Kk = const.

Asymptotic solution:

Dispersion: < r? >=2xt
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2-D turbulence model
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2-D turbulence model

Solves the vorticity equation:

0
5iCH Q) =F+D (1)

1) Energy cascade: kg = [100, 120]
D = vV 2, exponential cut-off filter

2) Enstrophy cascade: kg = [1, 5]
D — exponential filter

Doubly-periodic, 5122 grid points, 2000 particles
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Enstrophy cascade
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EOLE balloons

426 pairs at 200 mb, rp = 25km
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SCULP drifters

188 pairs, rp = 2km
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PDFs

POLEWARD drifters, Nordic Seas

93 pairs, rp = 2km
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Summary, Lecture Il

Relative dispersion concerns pairs of particles and reflects the
spread of a cloud of tracer

For homogeneous flows, relative dispersion depends on the
Eulerian energy spectrum

Observations support exponential growth below the
deformation radius in the lower stratosphere and at the ocean
surface

Implies the sub-deformation scale energy spectrum is at least
as steep as k3

Important for parameterizations and for simulating tracer
spreading, e.g. oil and volcanic ash
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