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The Gulf Stream

R ——

1: o N N .-.1_-:

Franklin (1770)

Joe LaCasce University of Oslo In defense of linear ocean models




Stommel’s model

Shallow water equations:
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Constant depth, rigid lid:
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Stommel’s model

If the flow is steady and:

U

W<<1

then: 5 )
JE— — 7,\ . ) — 2
Baxw ka (VX T)=rVay

Stommel (1948) solved this in a square basin, using boundary
layers (under the assumption that r is small)
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Solution

Streamfunction Wind Stress

Vallis (2006)
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Application to North Atlantic
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Application to North Atlantic
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Indian Ocean

The Indian Ocean

AFRICA

AUSTRALIA
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Indian Ocean

De Ruijter’s solution

A=o A=a A=b

FiG. 3¢, Asin Fig. 3a, except that curl v = sin(9¢ + Yx), (zeros at —25°, —45° —-), This
wind stress curl resembles (within the sinusoidal approximations with a 40* period) mast the
actual one. A pronounced free shear layver is now formed in the Atlantic.

De Ruijter (1982)
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Indian Ocean

Madagascar solution

.......

LaCasce and Isachsen (2007)
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Indian Ocean

Madagascar solution

Still based on Stommel's vorticity equation:

But basin geometry results in discontinuities in the Sverdrup
solution

Also the streamfunction on Madagascar must be determined
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Indian Ocean

Godfrey's Island Rule
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Indian Ocean

Island Rule

Assuming dissipation confined to western boundary currents:

//B Y dA = //V fudA—//VXTdA

With Gauss's and Stokes’ Laws:

jl{ffi-hdlzlf?-dl
pH

74 7 dl = [~ () — 7 (vs)] (e — xu1)

If 7% = 7%(y):

Godfrey (1989)
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Indian Ocean

Island Rule

XE X|
j(l{fﬁ-ﬁdlzf(ys)/ vdx—|—f(yN)/ v dx

Xi XE

= [f(ys) — f(yn)] ¥

So:
_ 7yw) = 7(ys) (

XE — XMm)
YN —Ys
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Indian Ocean

Sverdrup streamfunction

Sverdrup streamfunction

X Vxr
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Indian Ocean

Solution with boundary layers
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Indian Ocean

Comparison to observations
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Indian Ocean

Stability by the Rayleigh-Kuo criterion
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Indian Ocean

ROMS solution
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Indian Ocean

ROMS solution
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Indian Ocean

SSH and SST

SSH anomaly (TP/ERS) SST (Naval Res. Lab., MODAS MC SST)SSH
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De Ruijter et al. (2004)
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Indian Ocean

16 6 Velocity vectors in 41-m depth (level 3) for model days 30 Aug 31, 20 Oct 31, 19 Now 31, end 10 Dec 31 {values lss thas 5 cm
57 are omied). Note the marked ecily

Biastoch and Krauss (1999)
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Indian Ocean
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Indian Ocean

Solution
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Indian Ocean

Different wind forcing

Solution with different wind
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Nordic and Caspian Seas

Nordic Seas
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Nordic and Caspian Seas

Nordic Seas

e Topography cannot be ignored

Shallow water PV equation is:

de+f
d H
The linear version of this is:
0 L f 0 f
0 0 0adb 0adb
Hy=——V, Hv=—VY = - ——
! dy ' YT ox J(a.b) Ox 0y Oy dx
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Nordic and Caspian Seas

Geostrophic contours

Time-independent flows have:

J(W,—~)=0

which implies the mean flow is parallel to f/H

e The flow depends on the geometry of the basin
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Nordic and Caspian Seas

Flat bottom basin
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Nordic and Caspian Seas

Closed f/H contours
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Nordic and Caspian Seas

Nordic Seas f/H
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Nordic and Caspian Seas

Vorticity equation

With forcing and dissipation, the vorticity equation is:

—

7

B foox
a§+J(w,ﬁ)_k.vXpH 1%

Can non-dimensionalize this, assuming weak forcing and weak
temporal variations:

0 Foo 7

€
Then expand the streamfunction in e:
V=W, + eV + Wy + ...

Isachsen et al. 2003
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Nordic and Caspian Seas

Expansion

The zeroth order flow is parallel to f/H:

Swo, 1y =0
The first order terms are:
0 f A T
ECO‘FJ(‘ULE):/('V X ﬁ—Co

Integrate over a region bounded by an f/H contour:

aat//godA://Vx;dA—/ (o dA

By Stokes's theorem:

afu dl = ?{ dl — 7{3-5/
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Nordic and Caspian Seas

Expansion

e Determine the circulation on an f/H contour if we have the
winds

If Fourier transform in time:

then:
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Nordic and Caspian Seas

N
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Nordic and Caspian Seas

Basin transports
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Nordic and Caspian Seas

Comparison with

SSH
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Nordic and Caspian Seas

f/H in a GCM
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Nordic and Caspian Seas

Comparison in the Norwegian basin
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Nordic and Caspian Seas

Coherences in Norwegian and Greenland basins
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Nordic and Caspian Seas

Coherences in Canadian and Eurasian basins
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Nordic and Caspian Seas

Caspian Sea

M 1,650 fr.
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Nordic and Caspian Seas

Caspian f/H
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Nordic and Caspian Seas
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Nordic and Caspian Seas

Transport in the central basin
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Antarctic Circumpolar Current

Southern Ocean
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Antarctic Circumpolar Current

Linear models of the ACC

e Stommel (1957) proposed the ACC was in Sverdrup balance
— Not proved though

e Kamenkovich (1962) constructed an “f/H" model of the ACC
— Closed ocean gyres, no ACC

e Gill (1968) studied a “semi-blocked”, flat bottom model
— Transport varies as r~1: typically too large (1000 Sv)

o Ishida (1994) proposed a “broken barrier” model
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Antarctic Circumpolar Current

Ishida's model

x=C

y=0

x=0 x=D =M

LaCasce and Isachsen (2010)
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Antarctic Circumpolar Current

Ingredients

e Stommel vorticity equation:

Qw — 1 ai _ rv2¢
Ox

7 pH Oy

e Boundary layers on the eastern sides of the barriers and to
smooth out the Sverdrup discontinuities in the interior

e Use the Island Rule to determine I’

Joe LaCasce University of Oslo In defense of linear ocean models



Antarctic Circumpolar Current

Island contour

x=0 x=D x=M

Joe LaCasce University of Oslo In defense of linear ocean models



Antarctic Circumpolar Current

Island rule

%fﬁ-ﬁdl—%fvdx—/jl_lj{Txdx

The left hand side is:
F(B)[¥(C) = ¥(0)] + F(a)[:(D) — ¥(C)] + f(b)[(M) — (D)
= [£(2) — (L)
while the right is:
1 X X
= p—H[T (b)(M + C — D)+ m™(a)(D — C)]

So:

r L [M*(b) + (C — D)(+*(b) — 7*(a))]

[f(a) — f(b)]pH




Antarctic Circumpolar Current

Solutions




Antarctic Circumpolar Current

ROMS solution
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Antarctic Circumpolar Current

Transport vs. bottom friction
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Antarctic Circumpolar Current

ROMS Gill solution
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Antarctic Circumpolar Current

Equivalent barotropic solutions

Topography is of central importance to the ACC

Can take this into account assuming the current is equivalent
barotropic (Killworth, 1992):

u(x,y,z) = u(x, y)exp( =)
P4

The depth-integrated flow is proportional to (Krupitsky et al.,
1996):

0
H
F= / exp(i) dz = zp[1 — exp(——]
—H 20 20
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Antarctic Circumpolar Current

Equivalent barotropic solutions

So the in the equivalent barotopic model, f/H is replaced by f/F

If zg < H:
f/F~f/zyoxf

If zg > H:
f/F~f/H

Both limits are recovered
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Antarctic Circumpolar Current
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Antarctic Circumpolar Current
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Antarctic Circumpolar Current

Broken barrier equivalent
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Antarctic Circumpolar Current

Transport dependence on friction
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Antarctic Circumpolar Current

zo = 1400, with lateral friction
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Antarctic Circumpolar Current

Mean SSH from satellite
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Rio and Hernandez (2004)

Joe LaCasce University of Oslo In defense of linear ocean models



Antarctic Circumpolar Current

Points about the ACC

@ Results suggest the ACC has blocked geostrophic contours

@ Transport is determined by an Island integral of the wind
stress

@ The form drag balance is similar to the Island integral, but
along the wrong contour
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Antarctic Circumpolar Current

Summary

Linear models are often more than pedagogical

(]

Can give quantitative flow estimates

No need for long integrations

No problems with resolution

Call your program manager today!
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