In defense of linear ocean models

Joe LaCasce University of Oslo

January 23, 2013

Joe LaCasce University of Oslo In defense of linear ocean models

イロト イヨト イヨト イヨト

The Gulf Stream

Franklin (1770)

Joe LaCasce University of Oslo In defense of linear ocean models

Stommel's model

Shallow water equations:

$$\frac{\partial}{\partial t}u + u\frac{\partial}{\partial x}u + v\frac{\partial}{\partial y}u - fv = -g\frac{\partial}{\partial x}\eta + \frac{\tau^{x}}{\rho H} - \frac{R}{H}u$$
$$\frac{\partial}{\partial t}v + u\frac{\partial}{\partial x}v + v\frac{\partial}{\partial y}v + fu = -g\frac{\partial}{\partial y}\eta + \frac{\tau^{y}}{\rho H} - \frac{R}{H}v$$
$$\frac{\partial}{\partial t}\eta + \frac{\partial}{\partial x}(u(H+\eta)) + \frac{\partial}{\partial y}(v(H+\eta)) = 0$$

Constant depth, rigid lid:

$$rac{\partial}{\partial t}
abla^2\psi+ec{u}\cdot
abla(
abla^2\psi)+etarac{\partial}{\partial x}\psi=rac{1}{
ho H}\hat{k}\cdot(
abla imesec{ au})-r
abla^2\psi$$

イロト イヨト イヨト イヨト

Stommel's model

If the flow is steady and:

$$\frac{U}{\beta L^2} \ll 1$$

then:

$$\beta \frac{\partial}{\partial x} \psi = \frac{1}{\rho H} \hat{k} \cdot (\nabla \times \vec{\tau}) - r \nabla^2 \psi$$

Stommel (1948) solved this in a square basin, using boundary layers (under the assumption that r is small)

<ロ> (日) (日) (日) (日) (日)

Solution

Vallis (2006)

Application to North Atlantic

Э

Application to North Atlantic

The Indian Ocean

Joe LaCasce University of Oslo In defense of linear ocean models

Nordic and Caspian Seas Antarctic Circumpolar Current

De Ruijter's solution

FIG. 3c. As in Fig. 3a, except that curl $\tau = \sin(9\phi + 4\pi)$, (zeros at -25°, -45°, ---). This wind stress curl resembles (within the sinusoidal approximations with a 40° period) most the actual one. A pronounced free shear layer is now formed in the Atlantic.

De Ruijter (1982)

・ロト ・日本 ・モート ・モート

Madagascar solution

LaCasce and Isachsen (2007)

イロン 不同と 不同と 不同と

Madagascar solution

Still based on Stommel's vorticity equation:

$$\beta \frac{\partial}{\partial x} \psi = -\frac{1}{\rho H} \frac{\partial \tau^{\mathsf{x}}}{\partial \mathsf{y}} - \mathsf{r} \nabla^2 \psi$$

But basin geometry results in *discontinuities* in the Sverdrup solution

Also the streamfunction on Madagascar must be determined

- 4 同 2 4 日 2 4 日 2

Indian Ocean Nordic and Caspian Seas

Antarctic Circumpolar Current

Godfrey's Island Rule

・ロン ・回と ・ヨン・

Island Rule

Assuming dissipation confined to western boundary currents:

$$\iint \beta \frac{\partial}{\partial x} \psi \, dA = \iint \nabla \cdot (f \vec{u}) \, dA = \frac{1}{\rho H} \iint \nabla \times \vec{\tau} \, dA$$

With Gauss's and Stokes' Laws:

$$\oint f \vec{u} \cdot \hat{n} \, dl = \frac{1}{\rho H} \oint \vec{\tau} \cdot dl$$

If $\tau^{x} = \tau^{x}(y)$: $\oint \vec{\tau} \cdot dl = [\tau^{x}(y_{N}) - \tau^{x}(y_{S})](x_{E} - x_{M})$

Godfrey (1989)

(ロ) (同) (E) (E) (E)

Island Rule

$$\oint f \vec{u} \cdot \hat{n} \, dl = f(y_S) \int_{x_I}^{x_E} v \, dx + f(y_N) \int_{x_E}^{x_I} v \, dx$$
$$= [f(y_S) - f(y_N)] \psi_I$$

\sim		
~	\sim	•
\mathbf{J}	v	٠

$$\psi_I = \frac{\tau(y_N) - \tau(y_S)}{y_N - y_S} \left(x_E - x_M \right)$$

・ロト ・回ト ・モト ・モト

Sverdrup streamfunction

Joe LaCasce University of Oslo In defense of linear ocean models

Solution with boundary layers

イロン イ部ン イヨン イヨン 三日

Comparison to observations

F.A. Schott, J.P. McCreary Jr. / Progress in Oceanography 51 (2001) 1-123

★御★ ★注★ ★注★

Stability by the Rayleigh-Kuo criterion

< 🗇 🕨

Э

ROMS solution

ROMS solution

Joe LaCasce University of Oslo

In defense of linear ocean models

SSH and SST

De Ruijter et al. (2004)

Nordic and Caspian Seas Antarctic Circumpolar Current

Models

16. 6. Velocity vectors in 41-m depth (level 3) for model days 30 Aug 31, 20 Orr 31, 19 Nov 31, and 10 Dec 31 (values less than 5 cm s⁻¹ are omitted). Note the marked eddy.

Biastoch and Krauss (1999)

Joe LaCasce University of Oslo

In defense of linear ocean models

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Nordic and Caspian Seas Antarctic Circumpolar Current

Models

Nordic and Caspian Seas Antarctic Circumpolar Current

Solution

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Nordic and Caspian Seas Antarctic Circumpolar Current

Different wind forcing

Joe LaCasce University of Oslo In defense of linear ocean models

Nordic Seas

Nordic Seas

• Topography cannot be ignored

Shallow water PV equation is:

$$\frac{d}{dt}\frac{\zeta+f}{H}=0$$

The linear version of this is:

$$\frac{\partial}{\partial t}\zeta + H\vec{u} \cdot \frac{f}{H} = \frac{\partial}{\partial t}\zeta + J(\Psi, \frac{f}{H}) = 0$$
$$Hu = -\frac{\partial}{\partial y}\Psi, \quad Hv = \frac{\partial}{\partial x}\Psi, \quad J(a,b) = \frac{\partial a}{\partial x}\frac{\partial b}{\partial y} - \frac{\partial a}{\partial y}\frac{\partial b}{\partial x}$$

- < ≣ →

Geostrophic contours

Time-independent flows have:

$$J(\Psi, \frac{f}{H}) = 0$$

which implies the mean flow is parallel to f/H

• The flow depends on the geometry of the basin

イロト イポト イヨト イヨト

Flat bottom basin

-	-	-	-	1		-	-	-	-		1	2		-	-	1	-)	-	E		ŝ	-	-	-	-	1		1	-	-		1	-	1	5	-	6	1	1	5	5	8	-	ł	2	-)	-	1		e	-	-	-		-	-	-	-	-		i.	-	-	-	-	5		2	-	H	1	8	-	-	÷			-	5	-	-	-	-		-	-	
	-	-	-			-	-	-	-	-		2	-	-	-		5	-	5			-	-	-	-	6		-	-	-		1	-	c			1	1		đ	1	2	-	-	1		-	-	2	2	7	5			-	-	-	-	5			1	2	-	7	5	2	2		5	2		-	7	-			-	-			-	-	10		-	
-	-	-	-			-	-	-	2	1	1	3	2	-	-		1	-	2	2	1	2	_	2	2	1		-	-	1			-		2		1	2	1				-	2	8		2	1		-	-	1			-	-	2	2	1			2	-	-				3	-	-	2	1	2	-	2			2	-		_	2	4	2		-	
	-	-	-				5	-	5					-	-				7	1			20	-	5				5	-			5				5			-	-		-	1	8		-		8		-					-	-	5						-	5	-					-			2	-			-			-	-	53	55	53	-	
	7	-	-			-	-	2	7		0	0		-	-			-	2	20			70	7	7	1				3			7	2	1	0	0	0	1	5			-	1	0	23	5	0	0	2	7	1				7	5	7	1	2	0			-		-		2	2	77	1			2	1	8		3	-		•	5	7	10	7)	-	
ŀ	-	-	-			-	2	-	-			2		-	-			-	2			-			-	1			-	-			-	1	-		-	2					-	-	1		_	-			2	-			-	-	-	2	2	1			0	-	-	-			-	2			-	-				-	-			-	2		23	-	
	3	5		0	3	2	2	5	5		90		18	0			0	3	1	10	0	-	28	5	2	57			2	1		2	5	0	2	22	2		R	1		0	1	1	33	3	2			đ	3	1	2		20	2	2	3	2	0	0		3	1	1			S.	1	0			3	2	2	0	12	7			13	2	5	0	22	-	
-	-	2	-			2	-	2	2			1		-		2	2		-					2		2				2		2	_		-		1	1		-	2	2	-				_			2	2	2			-	2	-	2			-		-	-	-	1	2			-		1		-			3		-		2		2		2	-	
-	2	-	-			2	2	2	2		2	0		-	-		-	-	2		1	26	1	2	2			-	_	2		1	2	1			1	8	-	2			-	1	8	1	2			-	1	2			-	_	2	2	1	~		1	2	2				1	2	2	1	~	-	2	2			2	-	-		2	2		2	2	
-	Ξ	-	-		1	-	-	-	e	-		2	-	-	-		1	-	3	-	2	-	-	-	Ξ	-			-	3	1		-	2	5		-	2	-	3	2	2	-	-	2	-	-	2	2	8	-	1		1	-	-	-	-	-	2	2		-	-	3	3			-	5	1		-	-	-	1	-2	-	-	-	-	-	9	1	-	-	
		1	2	-	-	-		3	1	-	2	2	2		1	-	-			-	-	-	-	-		-	-	-	-		-	-	1	-	-	1	2	-	-		-	2	1		-	-		-	-	-	3		-	2	-	-			2	-	-	2	2	-		-	2	-			-	-	-	-	0	-	2	1	2	20	-	-		-	-		ĺ
	_																																																																																_		_			J	

・ロト ・回ト ・ヨト ・ヨト

Closed f/H contours

Joe LaCasce University of Oslo In defense of linear ocean models

< 口 > < 回 > < 回 > < 回 > < 回 > <

Nordic Seas <u>f/H</u>

Vorticity equation

With forcing and dissipation, the vorticity equation is:

$$\frac{\partial}{\partial t}\zeta + J(\Psi, \frac{f}{H}) = \hat{k} \cdot \nabla \times \frac{\vec{\tau}}{\rho H} - r\zeta$$

Can non-dimensionalize this, assuming weak forcing and weak temporal variations:

$$\epsilon \frac{\partial}{\partial t} \zeta + J(\Psi, \frac{f}{H}) = \epsilon \hat{k} \cdot \nabla \times \frac{\vec{\tau}}{H} - \epsilon \zeta$$

Then expand the streamfunction in ϵ :

$$\Psi = \Psi_0 + \epsilon \Psi_1 + \epsilon^2 \Psi_2 + \dots$$

Isachsen et al. 2003

(4) (3) (4) (3) (4)

Expansion

The zeroth order flow is parallel to f/H:

$$J(\Psi_0,\frac{f}{H})=0$$

The first order terms are:

$$\frac{\partial}{\partial t}\zeta_0 + J(\Psi_1, \frac{f}{H}) = \hat{k} \cdot \nabla \times \frac{\vec{\tau}}{H} - \zeta_0$$

Integrate over a region bounded by an f/H contour:

$$\frac{\partial}{\partial t} \iint \zeta_0 \, dA = \iint \nabla \times \frac{\vec{\tau}}{H} \, dA - \iint \zeta_0 \, dA$$

By Stokes's theorem:

$$\frac{\partial}{\partial t}\oint \vec{u}\cdot\vec{dl} = \oint \frac{\vec{\tau}}{H}\cdot\vec{dl} - \oint \vec{u}\cdot\vec{dl}$$

イロト イヨト イヨト イヨト

Expansion

- \bullet Determine the circulation on an f/H contour if we have the winds
- If Fourier transform in time:

$$\vec{u} = \hat{u}(x, y, \omega)e^{i\omega t}, \quad \vec{\tau} = \hat{\tau}(x, y, \omega)e^{i\omega t}$$

then:

$$\oint \hat{u} \cdot \vec{dl} = \frac{1}{r + i\omega} \oint \frac{\hat{\tau}}{H} \cdot \vec{dl}$$

イロト イヨト イヨト イヨト

EOF 1

Basin transports

<ロ> <同> <同> <同> < 同>

< ∃⇒

Comparison with SSH

イロン 不同と 不同と 不同と

f/H in a GCM

Comparison in the Norwegian basin

- 17

< ∃⇒

Coherences in Norwegian and Greenland basins

A ■

Coherences in Canadian and Eurasian basins

A (10) > (10)

< ∃⇒

Caspian Sea

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Caspian f/H

イロン イロン イヨン イヨン

Э

EOF 1

<ロ> (四) (四) (三) (三) (三)

Transport in the central basin

Ghaffari, Isachsen, LaCasce (2013)

イロン イヨン イヨン イヨン

Southern Ocean

Linear models of the ACC

- Stommel (1957) proposed the ACC was in Sverdrup balance \rightarrow Not proved though
- Kamenkovich (1962) constructed an "f/H" model of the ACC \rightarrow Closed ocean gyres, no ACC
- Gill (1968) studied a "semi-blocked", flat bottom model \rightarrow Transport varies as r^{-1} : typically too large (1000 Sv)
- Ishida (1994) proposed a "broken barrier" model

Ishida's model

LaCasce and Isachsen (2010)

・ロト ・日本 ・ヨト ・ヨト

Ingredients

• Stommel vorticity equation:

$$\beta \frac{\partial}{\partial x} \psi = -\frac{1}{\rho H} \frac{\partial \tau^{x}}{\partial y} - r \nabla^{2} \psi$$

• Boundary layers on the eastern sides of the barriers and to smooth out the Sverdrup discontinuities in the interior

 \bullet Use the Island Rule to determine Γ

Island contour

▲ロン ▲御と ▲注と ▲注と

Island rule

$$\oint f \vec{u} \cdot \hat{n} \, dl = \oint f v \, dx = \frac{1}{\rho H} \oint \tau^x \, dx$$

The left hand side is:

$$f(b)[\psi(C) - \psi(0)] + f(a)[\psi(D) - \psi(C)] + f(b)[\psi(M) - \psi(D)]$$

= [f(a) - f(b)]

while the right is:

$$=\frac{1}{\rho H}[\tau^{x}(b)(M+C-D)+\tau^{x}(a)(D-C)]$$

So:

$$\Gamma = \frac{1}{[f(a) - f(b)]\rho H} [M\tau^{x}(b) + (C - D)(\tau^{x}(b) - \tau^{x}(a))]$$

Solutions

Joe LaCasce University of Oslo

In defense of linear ocean models

ROMS solution

Transport vs. bottom friction

Joe LaCasce University of Oslo In defense of linear ocean models

ROMS Gill solution

Transport \approx 3000 Sv

・ロト ・回ト ・ヨト

< ≣⇒

Э

Equivalent barotropic solutions

Topography is of central importance to the ACC

Can take this into account assuming the current is equivalent barotropic (Killworth, 1992):

$$u(x, y, z) = u(x, y)exp(\frac{z}{z_0})$$

The depth-integrated flow is proportional to (Krupitsky et al., 1996):

$$F \equiv \int_{-H}^{0} exp(rac{z}{z_0}) dz = z_0[1 - exp(-rac{H}{z_0}]]$$

- 4 同 6 4 日 6 4 日 6

Equivalent barotropic solutions

So the in the equivalent barotopic model, f/H is replaced by f/F

If $z_0 \ll H$: $f/F \approx f/z_0 \propto f$

If $z_0 \gg H$:

 $f/F \approx f/H$

Both limits are recovered

・ロン ・回と ・ヨン ・ヨン

$z_0 = 500$

Joe LaCasce University of Oslo In defense of linear ocean models

$z_0 = 3000$

Joe LaCasce University of Oslo In defense of linear ocean models

$z_0 = 1400$

Joe LaCasce University of Oslo In defense of linear ocean models

Broken barrier equivalent

문 문 문

Transport dependence on friction

$z_0 = 1400$, with lateral friction

Joe LaCasce University of Oslo In defense of linear ocean models

Mean SSH from satellite

・ロト ・回ト ・ヨト

< ≣⇒

Rio and Hernandez (2004)

Points about the ACC

- Results suggest the ACC has *blocked geostrophic contours*
- Transport is determined by an Island integral of the wind *stress*
- The form drag balance is similar to the Island integral, but along the wrong contour

イロト イポト イヨト イヨト

- Linear models are often more than pedagogical
- Can give quantitative flow estimates
- No need for long integrations
- No problems with resolution
- Call your program manager today!