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The figure above shows the vertical velocity through an approximately neutral
surface caused by neutral helicity. That is, this is the actual vertical flow caused
by the helical nature of neutral trajectories. The magnitude in the Southern
Ocean is at leading order of 107 ms™
velocity, dating back to Munk (1966).

, this being the canonical diapycnal

The figure below is the total dianeutral velocity for all non-linear equation-of-
state processes, namely thermobaricity, cabbeling and the helical nature of
neutral trajectories.
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When globally integrated over complete density surfaces, the total transport due
to these non-linear processes can be calculated. In green is the mean dianeutral
transport from the ill-defined nature of “neutral surfaces”, blue is the dianeutral
transport due to cabbeling, red due to thermobaricity, and black is the total
global dianeutral transport due to the sum of these three non-linear processes.

We conclude from this that while the mean dianeutral transport from the ill-
defined nature of “neutral surfaces” is of leading order locally, it spatially
averages to a very small transport over a complete density surface. By contrast,
cabbeling and thermobaricity are predominantly downwards advection
everywhere, so there is little such cancellation on area integration with these
processes.
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Rotation of the horizontal velocity with height

Define the angle ¢ (measured counter-clockwise with respect to due east) of the
horizontal velocity v so that

v = M(cosq), sin(p) . (V_rotate_01)
Vertically differentiate this equation and take the cross product with v to obtain
vXv_=Kk@_|v ? , (V_rotate_02)

which shows that the rate of spiraling of the horizontal velocity vector in the
vertical, ¢_, is proportional to the amount by which this velocity is not parallel

to the direction of the “thermal wind” shear v_. The last equation can be

rewritten as

2
V‘ = k-vxXv_ =uv —vu = —v-kXxv_= -v-Vxv, (V_rotate_03)

-
which demonstrates that the rotation of the horizontal velocity with height is
proportional to the helicity of the horizontal velocity, v-Vxv.

Now, substituting Eqn. (3.12.3) for the “thermal wind” v_, namely

= (L 1 - _8 - N
fv, = (p)zkaZP+ LkxV_(P) = ~£kxV,p = 2 kxV P| (3123)
into Eqn. (V_rotate_03) we find
¢, V‘z =-v-kxv_ = % v-V P. (V_rotate_04)

Under the usual Boussinesq approximation —( gp)_l V_ P is set equal to the slope

of the neutral tangent plane, V z, so that we have

0. ~ _NT'Z vV 2z, (V_rotate_05)

and since the vertical velocity through a geopotential, w, is given by the simple

2
Y

geometrical equation (where e is the dianeutral velocity, that is, the vertical
velocity through the neutral tangent plane),

w=z,| + v-Vz+te, (V_rotate_06)
we have
2 N2
0, V‘ ~ -4 (w —e—z ”), (V_rotate_07)

showing that the rotation of the horizontal velocity vector with height is not
simply proportional to the vertical velocity of the flow but rather only to the
sliding motion along the neutral tangent plane, v-V z.

(projection of) m

,-/ ™ KkxV,into page
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The absolute velocity vector in the ocean

Neutral helicity is proportional to the component of the vertical shear of the
geostrophic velocity (v,, the “thermal wind”) in the direction of the

temperature gradient along the neutral tangent plane V, 0, since, from Eqn.

(3.12.3), namely fv_= 27—; kxV P, and the third line of (3.13.2), namely
H"=g" Nsze(VanVnG)-k , we find that

H"=pTl2 fv_-V,0. (3.13.4)
This connection between neutral helicity and an aspect of the horizontal velocity

vector motivates the idea that the mean velocity might be somehow linked to
neutral helicity, and this link is established in this section.

The absolute velocity vector in the ocean can be written as a closed
expression involving the neutral helicity, and this expression is derived as
follows. First the Eulerian-mean horizontal velocity is related directly to mixing
processes by invoking the water-mass transformation equation (A.23.1), so that

vV,6 = 7.V, (7'KV,0)+ KeN?6_(COV,6-V,6 + 2V,6-V,P)
(3.13.7)

+ DB°gN 0’ 5, ¥Y.VO-06
g z déz z n t n ?
where the thickness-weighted mean velocity of density-coordinate averaging, v,

has been written as Vv = v+ ¥, that is, as the sum of the Eulerian-mean
horizontal velocity v and the quasi-Stokes eddy-induced horizontal velocity ¥,

(McDougall and McIntosh (2001)). The quasi-Stokes vector streamfunction ¥ is
usually expressed in terms of an imposed lateral diffusivity and the slope of the
locally-referenced potential density surface (Gent et al., (1995)). More generally,

at least in a steady state when ¢) /| is zero, the right-hand side of Eqn. (3.13.7) is

n
due only to mixing processes and once the form of the lateral and vertical
diffusivities are known, these terms are known in terms of the ocean’s
hydrography. Eqn. (3.13.7) is written more compactly as

vor =t where ©=V,0/v,6, (3.13.8)

1. . . ..
and v~ is interpreted as being due to mixing processes.

Following Needler (1985) and McDougall (1995) the mean horizontal
velocity ¥ is split into components along and across the contours of © on the
neutral tangent plane, so that

v =vltxk +vi1, (3.13.9)

where vl = v.1xk. Note that if T points northwards then Txk points
eastward. The expression V-1 =v- of Eqn. (3.13.8) is now vertically
differentiated to obtain

VT = -V -1 +v = —ffv—zka Pt + v, (3.13.10)
z gp n zZ
where we have used the “thermal wind” equation (3.12.3), V_ = %kaﬂP.

We will now show that the left-hand side of this equation is — ¢Zv” where ¢_is

the rate of rotation of the direction of the unit vector T with respect to height (in
radians per metre). By expressing the two-dimensional unit vector © in terms of
the angle ¢ (measured counter-clockwise) of T with respect to due east so that

T = (cosq), sin(p), we see that 1txk = (sin¢,—cos¢), T =-¢ Xk and
k-tx1 = ¢_. Interestingly, ¢ is also equal to minus the helicity of T (and to

minus the helicity of Txk), thatis, ¢, = -1-Vx1 = —(txk)Vx(rxk), where
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the helicity of a vector is defined to be the scalar product of the vector with its

curl. From the velocity decomposition (3.13.9) and the equation T, = —¢_Txk
we see that the left-hand side of Eqn. (3.13.10), v-1_, is — ¢Zv” , hence v! can be
expressed as

| _ N° k'V Px1
Jo &SRt

1L n 1
v, [ — H v,

- — or vV = ——————— b

fgp o, 9. o.pfT|V,6 9.

where we have used the definition of neutral helicity H", Eqn. (3.13.2). The

., (3.13.11)

expression for both horizontal components of the Eulerian-mean horizontal
velocity vector Vv is

N? k-V Pxt v* N
= {——2— - ZF‘t1xk +v1, (3.13.12)
fgp ¢z ¢Z
and the horizontal velocity due to solely the two mixing terms can be expressed as
i 132
S (V_)[”ikj , (3.13.13)
¢Z ¢Z v z

which has the magnitude = =

é(vltxk)

é(vlt)z (vl’t)q)‘ )

Equation (3.13.12) for the Eulerian-mean horizontal velocity v shows that

z

in the absence of mixing processes (so that v== v = 0) and so long as

(i) the epineutral O contours do spiral in the vertical (i.e. ¢_ #0) and

(ii) ’Vn(:)‘ is not zero,
then neutral helicity A" (which is proportional to k-V _Px 1) is required to be
non-zero in the ocean whenever the ocean is not motionless. Neutral helicity
arises in this context because it is proportional to the component of the thermal
wind vector V_ in the direction across the © contour on the neutral tangent
plane (see Eqn. (3.13.4)).

Planetary potential vorticity

Planetary potential vorticity is the Coriolis parameter f times the vertical
gradient of a suitable variable. Potential density is sometimes used for that
variable but using potential density (i) involves an inaccurate separation
between lateral and diapycnal advection because potential density surfaces are
not a good approximation to neutral tangent planes and (ii) incurs the non-
conservative baroclinic production term of Eqn. (3.13.5). Using approximately
neutral surfaces, “ans”, (such as Neutral Density surfaces) provides an optimal
separation between the effects of lateral and diapycnal mixing in the potential
vorticity equation. In this case the potential vorticity variable is proportional to
the reciprocal of the thickness between a pair of closely spaced approximately
neutral surfaces.

The evolution equation for planetary potential vorticity is derived by first
taking the epineutral “divergence” V, - of the geostrophic relationship from

Eqn. (3.12.1), namely v = gkxV z . The projected “divergences” of a two-

dimensional vector a in the neutral tangent plane and in an isobaric surface, are

V,,a=V_a+a -V zand V -a =V a+a_ -V z from which we find (using
Eqn. (3.126), V,z -V z =V, P/P)

V, a= Vp~a+az-VnP/Pz. (3.20.1)
Applying this relationship to the two-dimensional vector fv = gkxV z we

have
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v, (#) = ng-(kapz) + f,-V.P/P = 0. (3.20.2)

The first part of this expression can be seen to be zero by simply calculating its

components, and the second part is zero because the thermal wind vector v_

points in the direction kxV P (see Eqn. (3.12.3)). It can be shown that
V. ( fv) = 0 in any surface » which contains the line VPxVp .

Egn. (3.20.2), namely Vn~(fv) = 0, can be interpreted as the divergence
form of the evolution equation of planetary potential vorticity since

v,-(#) = V[(;—v] -0, (3.20.3)

where g = fy_ is the planetary potential vorticity, being the Coriolis parameter

times the vertical gradient of Neutral Density. This instantaneous equation can
be averaged in a thickness-weighted sense in density coordinates yielding

i R e s

z z

(3.20.4)

~

where the double-primed quantities are deviations of the instantaneous values
from the thickness-weighted mean quantities. Here the epineutral eddy flux of
planetary potential vorticity per unit area has been taken to be down the
epineutral gradient of ¢ with the epineutral diffusivity K. The thickness-
weighted mean planetary potential vorticity is

= f7., (3.20.5)

and the averaging in the above equations is consistent with the difference
between the thickness-weighted mean velocity and the velocity averaged on the
Neutral Density surface, v -V (the bolus velocity), being v -V = K ann(c}),
since Eqn. (3.20.4) can be written as V, -(f\Af) = Vn~(77;1KVnc}) while the
epineutral temporal average of Eqn. (3.20.3)is V, -(fff) =0.

The divergence form of the mean planetary potential vorticity evolution

equation, Eqn. (3.20.4), is quite different to that of a normal conservative variable
such as Absolute Salinity or Conservative Temperature,

(YQ } oY [9_] L v, (7:'kv,6) + (2°.), . (6_Eqn)

n ,)/Z v
because in Eqn. (3.20.4) the following three terms are missing; (i) the vertical
diffusion of ¢ with diffusivity D (ii) the dianeutral advection of ¢ by the
dianeutral velocity €, and (iii) the temporal tendency term.

z z

The mean planetary potential vorticity equation (3.20.4) may be put into the
advective form by subtracting ¢ times the mean continuity equation,

1y V,1'(~LJ + %2, (3.20.6)
7.l,), 7.) 1.
from Eqn. (3.20.4), yielding ()72_l times)
§| +9Vq = 7ZV,,-(J7§1KV,,(2) +Gé. (3.20.7)
or
R . n an dg - o n e
qt|n +Vv- Vg +eéq = d—? = }/ZVH~(1/21Kan) + (qe)z . (3.20.8)

In this form, it is clear that planetary potential vorticity behaves like a

conservative variable as far as epineutral mixing is concerned, but it is quite
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unlike a normal conservative variable as far as vertical mixing is concerned;
contrast Eqn. (3.20.8) with the conservation equation for Conservative
Temperature,

+VV,0+ 0, = % = 7.9, (7:'K9,0)+(D6.) |.  (a2115)

A

(S}

t

If § were a normal conservative variable the last term in Eqn. (3.20.8)
would be (Déz)z where D is the vertical diffusivity. The term that actually
appears in Eqn. (3.20.8), (q”é)z, is  different to (Déz)z by
(c}é—Dc}Z)z =f (é?Z—DJ7ZZ)Z. Equation (A.22.4) for the mean dianeutral
velocity & can be expressed as & =~ D_ + Dy_/7. if the following three aspects
of the non-linear equation of state are ignored; (1) cabbeling and thermobaricity,
(2) the vertical variation of the thermal expansion coefficient and the saline
contraction coefficient, and (3) the vertical variation of the integrating factor
b(x,y,z) of Eqns. (3.20.10) - (3.20.15) below. Even when ignoring these three
different implications of the nonlinear equation of state, the evolution equations
(3.20.7) and (3.20.8) of ¢ are unlike normal conservation equations because of
the extra term

(ge-Dq,). = f(er,-py.). = f(D7.). = (D4). (3.20.9)
on their right-hand sides. This presence of this additional term can result in
“unmixing” of § in the vertical. Consider a situation where both § and © are
locally linear functions of § L, down a vertical water column, so that the N A= 4q
and § s © diagrams are both locally straight lines, exhibiting no curvature.
Imposing a large amount of vertical mixing at one height (e. g. a delta function
of D) will not change the § s © diagram because of the zero § s © curvature
(see the water-mass transformation equation (A.23.1)). However, the additional
term (qu")z of Eqn. (3.20.9) means that there will be a change in ¢ of
(ch})z =qgD_+q D, = gD_. Thisis ¢ times a negative anomaly at the central
height of the extra vertical diffusion, and is ¢ times a positive anomaly on the
flanking heights above and below the central height. In this way, a delta
function of extra vertical diffusion induces structure in the initially straight
S »— ¢ line which is a telltale sign of “unmixing”.

This planetary potential vorticity variable, § = f7_, is often mapped on

Neutral Density surfaces to give insight into the mean circulation of the ocean on
density surfaces. The reasoning is that if the influence of dianeutral advection
(the last term in Eqn. (3.20.7)) is small, and the epineutral mixing of ¢ is also
small, then in a steady ocean V-V ¢ = 0 and the thickness-weighted mean flow
on density surfaces v will be along contours of thickness-weighted planetary
potential vorticity ¢ = f7..

Because the square of the buoyancy frequency, N?, accurately represents
the vertical static stability of a water column, there is a strong urge to regard
fN? as the appropriate planetary potential vorticity variable, and to map its
contours on Neutral Density surfaces. This urge must be resisted, as spatial
maps of fN? are significantly different to those of § = f 7.. To see why this is
the case the relationship between the epineutral gradients of ¢ and N> will be
derived.

For the present purposes Neutral Helicity will be assumed sufficiently small
that the existence of neutral surfaces is a good approximation, and we seek the
integrating factor b= b(x, y,z) which allows the construction of Neutral Density
surfaces (y surfaces) according to
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Vv _ ( BOVS, — a@ve) = b (@ - KVP] . (3.20.10)
4 P
Taking the curl of this equation gives
%X(KVP—EJ = —VkxVP. (3.20.11)
P

The bracket on the left-hand side is normal to the neutral tangent plane and
points in the direction n = -V z +k and is g 'N? (—Vnz +k). Taking the
component of Eqn. (3.20.11) in the direction of the normal to the neutral tangent
plane, n, we find

0 =VkxVP-n = (Vx +xn)x(V,P+ Pn)n
= VxxV,Pon = VexV,Pk = (i, V,5, +5,V,0)xV, Pk (320.12)
= TV, PxV ©-k = gNH",

which simply says that the neutral helicity A" must be zero in order for the
dianeutral component of Eqn. (3.20.11) to hold, that is, V, PxV ©-k must be
zero. Here the equalities k, = 7 and k, = — &) have been used.

A

Since Vb can be writtenas Vb =V b + b n, Eqn. (3.20.11) becomes
g NV, Inbx(-V,z +K) = = PV kx(-V z +k), (3.20.13)

where VP = PZ(—VPZ + k) has been used on the right-hand side, (—sz + k)
being the normal to the isobaric surface. Concentrating on the horizontal

components of this equation, g 'N? V,Inb = - PV x, and using the
hydrostatic equation P. =—gp gives
V,Inb = pg’N7V,x = - pgN7(afV,0- BEY,S, )| (3.20.14)

The integrating factor 5 defined by Eqn. (3.20.10), that is
b=-gN2y'Vy-n/(n-n) =—gN?y"'Vy-n/(1+V, 2.V z), allows spatial
integrals of b(ﬁQVSA—aOVG)) = Viny to be approximately independent of
path for “vertical paths”, that is, for paths in planes whose normal has zero
vertical component.

By analogy with fN?, the Neutral Surface Potential Vorticity ( NSPV ) is
defined as —gy ™' times § = f 7., so that NSPV = b fN * (having used the vertical
component of Eqn. (3.20.10)), so that the ratio of NSPV to fN” is found by
spatially integrating Eqn. (3.20.14) to be

NSPV
sz

=pb = exp{—fanspgzN_z(chVp@—ﬂngSA)-dl}
(3.20.15)

= exp{ Lmspg2 N_ZVPK : dl} .

The integral here is taken along an approximately neutral surface (such as a
Neutral Density surface) from a location where NSPV is equal to fN*.
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Figure. Map of NSPV versus fN2 Plot of the ratio of NSPV to fN’ on a

Neutral Density surface in the Atlantic.

The deficiencies of fN? as a form of planetary potential vorticity have not
been widely appreciated. Even in a lake, the use of fN* as planetary potential

vorticity is inaccurate since the right-hand side of (3.20.14) is then
)
o
—pg’N2aV,0 = pg’N>a20_ V,P/P. = - a—g Vo P, (3.20.16)

where the geometrical relationship V © = -0, VoP/P. has been used along
with the hydrostatic equation. The mere fact that the Conservative Temperature
surfaces in the lake have a slope (i. e. Vg P # 0) means that the spatial variation
of contours of fN* on a © surface will not be the same as for the contours of
NSPV ona © surface in a lake.

~ i s
S5 W W S S GO SCI

%f(m JCREI | e
[VANINEN Qa\m’i\

Figure. NSPV versus fN? in a lake. Because the thermal expansion coefficient

is a function of pressure, the vertical integral of N* on the two vertical parts of
the closed loop are not equal, even in a lake.

In the situation where there is no gradient of Conservative Temperature
along a Neutral Density surface (V,0=0) the contours of NSPV along the
Neutral Density surface coincide with those of isopycnal-potential-vorticity
(IPV), the potential vorticity defined with respect to the vertical gradient of
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potential density by IPV =—fgp~'p°. IPV is related to fN* by (McDougall
(1988))

sz Nz IBG (p) I:Rp_l] ﬁe (p) G@ GO >
so that the ratio of NSPV to [PV, evaluated on an approximately neutral
surface, is

NsPy_ SO(p) [Ro-1]

IPV 5°(p,) [Rp/r—l
The sketch below indicates why NSPV is different to [PV ; it is the highly
differentiated nature of potential vorticity that causes the isolines of IPV and
NSPV to not coincide even at the reference pressure p, of the potential density
variable. NSPV, fN 2 and IPV have the units s>,

PV _—gp p® )[R/l )

] exp{[,,,. 8" N7V p(pr)-dl}. (3.20.18)

»~ neutral surface

S potential density surface

|

neulral surface and
potential density surface

/;’f“_Lpo-tfnlial density surface

Y. neutral surface

:

=4
L

Fig. 14. A vertical cross section through three neutral surfaces and
three potential density surfaces. The reference pressure of the potential
density is the pressure of the central point, a. The neutral surface and
potential density surface that pass though this point are parallel. The
slopes of the other pairs of surfaces are different.
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Production of entropy when ice melts into seawater

The general case we consider in this section has the seawater temperature
above its freezing temperature, while the ice, in order to be ice, needs to be at or
below the freezing temperature of pure water (i.e., seawater having zero
Absolute Salinity). Note that this condition permits situations in which the
initial ice temperature (say, -1 °C) is higher than or equal to that of seawater
(say, -1.5 °C), as is often the case for floating ice sheets.

In other words, the general case we are considering is not an equilibrium
situation in which certain amounts of ice and seawater co-exist without further
melting or freezing. Rather, we consider a very small mass of ice in contact with
a large mass of seawater. Without exchange of heat or matter with its
surroundings, the initial non-equilibrium two-phase state is assumed to always
turn irreversibly into a final ice-free equilibrium state after requisite relaxation
time. During the melting of ice Ih into seawater at fixed pressure, entropy
increases (or in one special case, is constant) while three quantities are
conserved; mass, salt and enthalpy. While this process is adiabatic it is not
isentropic.

The equations representing the budgets of mass, salt, enthalpy % and entropy
n during this adiabatic melting event at constant pressure are

msfw = méw + My, (Entropy_1)
meWSIf\ = méWSL, (Entropy_2)
mi bt = mi B+ my h" (Entropy_3)
meWT]f = méwni + mlhnIh + my, O . (Entropy_4)

The superscripts i and f stand for the “initial” and “final” values, that is, the
values before and after the melting event, while the subscripts SW and Ih stand
for “seawater” and “ice Ih”.

When we considered the production of entropy on mixing between pairs of
seawater parcels the nonlinear production term was written as being
proportional to the mass of the sum of the two seawater parcels, that is as
mé, 81, but in the present situation it seems sensible to write the production of
entropy term as proportional to the mass of ice being melted, that is as m, 07,
since the production of entropy is proportional to m,, . Hence we will take o1 to
be the non-conservative production of entropy on melting per unit mass of ice.

The mass, salinity and enthalpy conservation equations and the entropy
evolution equation, (Entropy_1) — (Entropy_4), can be combined to give the
following expressions for the differences in the Absolute Salinity, the specific
enthalpy and the specific entropy of the seawater phase due to the melting of the

ice,
(s5-83) = - m-si = —whs), (Entropy_5)
Msw
(A=) = = wh(n = a"), (Entropy_6)
(T]f - ni) = - wlh(ni - nlh) + th(Sn , (Entropy_7)

where we have defined the mass fraction of melted ice Th m, / méw as w™. The
initial and final values of the specific enthalpy of seawater are given by
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W= h(S;,ti,p) = l;(Sj\,@i,p) and A= h(Si,tf,p) = fz(Si,G)f,p), where the
specific enthalpy of seawater has been written in two different functional forms,
one being a function of in situ temperature and the other being a function of
Conservative Temperature. Similarly, the initial and final values of the specific
entropy of seawater are given by 7n'= n(SL,ti,p) = ﬁ(Sj\,@i) and
ni = n(SL,ti,p) = ﬁ(Sj\,@i), noting that when expressed in terms of Conservative
Temperature, the specific entropy of seawater is not separately a function of
pressure.

We have illustrated the use of Eqns. (Entropy_5) and (Entropy_6) in Fig.
Ice_4(a), Ice_5 and Ice_6. Note that at p=0dbar Eqn. (Entropy_6) becomes
simply @' —@' = — w" (@i - hlh/c?)).

Rearranging Eqn. (Entropy_7) we find the following expression for the
production of entropy on melting, o1,

£ i
on = Llhn) + (ni—nlh) . (Entropy_8)
w

Another way of expressing this uses Eqn. (Entropy_6) to arrive at

i _ g1

This equation provides a way of calculating the non-conservative production
of entropy because for given input parameter values we know how to calculate
the final values of Absolute Salinity and enthalpy, and hence the final value of
both in situ and Conservative Temperatures. Hence we can calculate the final
value of entropy n' and then use Eqn. (Entropy_9) to evaluate 1. But before
we do this, we will use the above equations to explore the situation near
thermodynamic equilibrium.

Entropy production as equilibrium conditions are approached

Here we prove that as equilibrium conditions are approached, the production
of entropy on melting tends to zero. That is, as the temperature of both the
seawater and the ice approach the freezing temperature, the production of
entropy per unit mass of ice that melts, 6n, approaches zero. The specific
entropy of seawater is regarded as being a function of specific enthalpy, that is,
in the functional form n=n (S A p), and the entropy difference between the
initial and final entropies of seawater, n° — ', is expanded as a Taylor series in
Absolute Salinity and specific enthalpy at fixed pressure about the initial
properties at (Sj\, hi,p) as

o ) o)

) 5 (Entropy_10)
= f_ i = £ i \(5f _pi = (f i

#1g  (SE=S3) + My (Sh-Si (A=A )+ 10, (W =K + hod,

where h.o.t. stands for “higher order terms”. Using Eqns. (Entropy_5) and

(Entropy_6) to express the property differences (Sf\ —Sj\) and (hf - hi) of Eqn.

hS; and

wlh(hi - hlh), we find the following Taylor series expression for the production

(Entropy_9) in terms of the known properties of the initial state, w

of entropy o1 (from substituting Eqn. (Entropy_10) into Eqn. (Entropy_8))
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on = _ﬁSAS/ix _ ﬁh(hi_hlh) " (ni _nlh)

+wh [%ﬁSASA (S;)Z_F ﬁhSAij(hi_hIh) + %ﬁhh(hi—hlh)z} \ bt (Entropy_11)

The terms on the right-hand side of this equation are all in terms of properties of
the initial state, before melting occurs, and the partial derivatives are all
evaluated at (Sj\, hi,p) .

From the Fundamental Thermodynamic Relation,
dh —vdP = (Ty+t)dn + udS,, we note that the partial derivatives of specific
entropy that appear in Eqn. (Entropy_11) are given by

s, = —u/T  and n, = /T, (Entropy_12a,b)
where T = T +¢ is the Absolute Temperature and u is the relative chemical
potential of seawater. Substituting these expressions for ﬁSA and 7, into Eqn.
(Entropy_11) gives

o = %S; - %(hi—h“‘) +(n'=n")

. o A , (Entropy_13)
. wlh[%ﬁSASA (54 )+ 4 (1= + 21, (=) } + hot

As equilibrium conditions are approached, the mass fraction w" of ice that
can melt in seawater approaches zero (because the temperature of the seawater
approaches the freezing temperature and has little excess enthalpy available to
melt much ice). Hence, as equilibrium conditions are approached, the terms
proportional to w" in Eqn. (Entropy_13) can be ignored.

The enthalpy of seawater is defined in terms of the Gibbs function of
seawater by h = g — Tg,, and the enthalpy of ice Ih is given in term of the Gibbs
function of ice ITh by A™ =g" T Ihg;h. Correspondingly, the entropies of
seawater and of ice Th are the negatives of their respective temperature
derivatives, that is, n =-g, and 't =— g;h. Also, the relative chemical
potential of seawater u is the derivative of the Gibbs function of seawater with
respect to Absolute Salinity, u = s,/ the chemical potential of ice Th is u™ = g™
and the chemical potential of water in seawater is uW=g-5 A8s, = &~ Su.
Considering the case where the mass fraction of ice tends to zero, the right-hand
side of Eqn. (Entropy_13) becomes

n e, = ‘;—:S{i _ %(hi _ hIh) i (ni _nlh)
= %(glh— g+ uiS;) - n‘h[l - TT—lh] (Entropy_14)
_ %(‘ulh_‘uWi_ nt I:Ti _ Tlh]) ‘

This equation is a remarkably simple expression that applies for arbitrary
temperatures of seawater and of ice and is 100% accurate in the w" —0 limit.
Eqn. (Entropy_14) has been plotted on the same axes as Figures Ice_16(a) and
Ice_17(a) below and the plots are indistinguishable (since these panels of these
figures were for vanishingly small ice mass fraction).

As we have learnt, and as described in IOC et al. (2010), the equilibrium

between seawater and ice occurs at the temperature T, at which the chemical

freeze
potential of water in seawater u" equals the chemical potential of ice u™, that
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is, when g™ —g' + ,uiS; is zero. As equilibrium conditions are approached, that
is, as the temperature of both the seawater and the ice Ih approach the freezing
temperature at given seawater salinity and pressure, we have that
[Ti - Tlh]—>0, and since both (ulh—uWi)% 0 and w" =0 in this limit, we see
by combing Eqns. (Entropy_13) and (Entropy_14) that én—0.

This completes the proof that as equilibrium conditions are approached, the
non-conservative production of entropy on melting per unit mass of ice melted,
on, tends to zero.

Entropy production for arbitrary seawater and ice temperatures
Returning to the equation for the non-conservative production of entropy,
namely Eqn. (Entropy_8) or (Entropy_9), we have plotted 6n for three different

) . Ih
values of the ice mass fraction w

on the seawater temperature -
ice temperature plot, and for S, =S, =35.16504 g kg™ at p=0dbar in both
Figures Ice_16 and Ice_17. As noted above, as wih — 0, Eqn. (Entropy_9) and

Eqn. (Entropy_14) give the same results for 67 .
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Figure Ice_16. The production of entropy (JK™ (kg ice Ih)_l) from Eqn.
(Entropy_9) for three different values of w" and for S » =S50 =35.16504 g kg™ at
p=0dbar.
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Figure Ice_17. The production of entropy (J K™ (kg ice Ih)_l) from Eqn.
(Entropy_9) for three different values of w™ and for § » =S50 =35.16504 g kg™
at p=0dbar. This is the same as Figure Ice_16, but for restricted temperature
ranges.
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Discussion of the LINEAR dependence of the production of entropy
on seawater temperature

These numerical results indicate that the production of entropy depends on
the square of the difference between the ice temperature and the freezing
temperature, but surprisingly, it depends LINEARLY on the difference between
the seawater temperature and the freezing temperature. A Taylor series analysis
of Eqn. (Entropy_13) conforms this linear dependence on [T T

freeze |°

Here we attempt to understand why does the production of entropy depends

since it is normal

. . i
linearly on the seawater temperature difference [T = Theere I/

to find that the production of entropy is proportional to the square of property
differences. In this regard, recall that (i) the non-conservative production of
entropy when seawater parcels are turbulently mixed to uniformity is
proportional to the square of the property differences,

m, m, — 2 — - 2
on = — 1M {nhh(Ah) + 21,5, ARAS, +nSASA(ASA) }, (A.16.6)

2 2
m

and (ii) the corresponding non-conservative production of entropy expressed in
terms of the molecular fluxes is given by the second line of the following

equation,
d 1
Pd_?:(l)n)t + V(Pun) = _V'(FFQ— %FSJ

(B.24)
+ FQ~V(l] + FS-V(i].

T T
Since the molecular flux of heat F® is approximately proportional to the
gradient of temperature, we see that both the laminar and turbulent cases have

the production of entropy being proportional to the square of either property
differences or of property gradients.

So how is it that we have found that for the process of ice melting into
seawater (or indeed water) that the non-conservative production of entropy on
is linearly proportional to the seawater temperature (that exceeds the freezing
temperature)?

We can find the answer by doing a Taylor series expansion of Eqn.
(Entropy_13) about the equilibrium point. The lowest-order term in
temperature differences to on is

M + (%j S/L |:Ti_Tfreeze] +
T

2
(T ) (Entropy_15)

_ |:hi _ S;héA}[Tleieeze] N

The enthalpy flux [ B S/i%h;A J , per unit mass of ice Ih melted, is familiar; it
is the amount of enthalpy that effectively departs the seawater and enters the ice
(in order to convert the ice to seawater), and it includes the change in enthalpy
due to the change in the seawater salinity due to melting. So Eqn. (Entropy_15)
does seem to have the usual form of a flux of enthalpy times a difference of 1/T,
just the same as the second line of Eqn. (B.24). So the form is actually the same
as usual, it is just that with the phase change, there is an enthalpy flux per unit
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mass [h' - S;h;AJ that is approximately independent of the temperature
differences.

Melting and freezing:- an entropy production pump

When ice melts into seawater that is warmer than the freezing temperature,
we have shown that there is a non-conservative production of entropy. What
happens during the reverse process, when ice forms? Well, when ice forms, it
forms at the freezing temperature, so the freezing occurs near equilibrium
conditions, so there is nearly zero production of entropy. So we seem to have a
one-way valve, or an entropy pump, in which entropy is produced on melting,
but is not produced (or consumed) on freezing.

Melting into an intermediate mass of seawater

First, consider the melting of say 1 kg of ice into 999 kg of seawater. Second,
consider the following two-stage process where we initially melt the 1 kg of ice
into just 499kg of the same seawater, and then in a second stage, mix this 500kg
of diluted and cooled seawater with the remaining 500kg of original seawater.
We would hope that the production of entropy via this two-stage process would
be the same as in the one-stage melting process, and it can be shown that this is
the case.
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