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The vertical gradient of potential density
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Figure 6.10 Vertical sections of density in the western Atlantic. Note that the depth scale
changes at 1000 m depth. Upper: og, showing an apparent density inversion below 3,000 m.
Lower: o4 showing continuous increase in density with depth. After Lynn and Reid (1968).

The potential density of a seawater sample (S 0, p), referenced to reference
pressure p_ is given by pe(S A 9) = [)(S 0 O, pr). The vertical gradient of the
natural logarithm of potential density is 3° (p,) times the vertical gradient of
Absolute Salinity minus o® (p,) times the vertical gradient of Conservative
Temperature,

(S]
p%agz - ﬁe(pr)SAz - a®(p,)e.. (A.26.2)

The ratio of this vertical gradient of potential density to the square of the
buoyancy frequency is given by (Tutorial exercise)

o p® _B(p)[R/r-1] _BOe) 11
NE )[R BO(e) 60 GO

where r is the ratio of the slope on the §, —©® diagram of an isoline of potential

(3.20.5)

density with reference pressure p, to the slope of a potential density surface

with reference pressure p, and is defined by

®(S4,0,p)/ B°(5x:0.P)

/ (3.17.2)
(X@ (SA’G’pr )/ﬂe (SA’G)’pr)
and the “isopycnal temperature gradient ratio” G° is defined by
R,—-1 6
G® = u where R = (;6792 (3.17.4)
[, /1] Bo(s,).

is the ratio of the vertical contribution from Conservative Temperature to that
from Absolute Salinity to the static stability N? of the water column. The name
“isopycnal temperature gradient ratio” is chosen for G° because it can be
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shown that G® is the ratio of the gradient of Conservative Temperature in a
potential density surface to that in a neutral tangent plane (Tutorial exercise),

V,0 =GV, . (3.17.3)

The saline contraction coefficient B° (S 20, p) does not vary very much
from a constant value compared with variation of the thermal expansion
coefficient Oce(S 20, p) . That is, you make a 10% - 20% error by approximating
r as
a°(8,.0.p)
Ot@(SA,G,pr) '

There is never any reason to actually make this approximation in numerical
work, rather this approximation can aid in thinking about what causes what in
the ocean. [You can check that this is a good approximation by inspection of the
red and blue potential density contours on the above §, —© diagram.]

(3.17.2_approx)

Also, the slope difference between that of a neutral tangent plane and a
potential density surface is given by (Tutorial exercise)

Ve-V 0 Vo

Vz-V, 2z = -21—9— = (1_G®)L
62

(3.18.1)

FiG. 1. Sketch of a cross section through the ocean showing a
neutral surface and a potential density surface passing through point
a. At a horizontal distance éx from point a, a vertical cast cuts the
two surfaces at points b and c.
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FIG. 7. Maps of pressure on two potential density surfaces: (a) g, = 27.73; (b) g, = 27.83. The potential
density surfaces intersect the same neutral surface (NSa of Fig. 6) at different positions. This is illustrated
in cross section in (c), which goes from near Nova Scotia on the left to near the Straits of Gibraltar on the
right. Also shown (dashed lines) are a potential density surface referenced to a pressure of 1000 db (o}
= 32.34) and a potential density surface referenced to 2000 db (¢, = 36.84).
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FI1G. 2. Sketch of a neutral surface and three different potential
density surfaces, referenced to 0 db, 1000 db and 2000 db. The neutral
surface is tangential to potential density surfaces only at the reference
pressure of those potential density surfaces. In this way, the neutral
surface can be regarded as the envelope curve of many locally ref-
erenced potential density surfaces with continually changing reference
pressures. The definition of a neutral surface adopted in this paper
avoids the concept of potential density and in particular, avoids the
changing reference pressure which is endemic to a neutral surface
defined in terms of potential density concepts.
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Below is a cross-section of Neutral Density in the Southern Ocean.
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Before Neutral Density was available, cross-sections of density used potential
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density referenced to three different reference pressures, 0 dbar, 2000 dbar, and

4000 dbar, as shown above.
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Geostrophic, hydrostatic and “thermal wind” equations

The geostrophic approximation to the horizontal momentum equations (Eqn.
(B9)) equates the Coriolis term to the horizontal pressure gradient V_P so that
the geostrophic equation is

fkxpu=-V_ P or V= %kXVZP = gkxV z, (3.12.1)

where u is the three dimensional velocity and v = —kx(kxu) is the horizontal
velocity where k is the vertical unit vector (pointing upwards) and f is the
Coriolis parameter. The last part of the above equation has used V_P = —PV =z

from Eqn. (3.12.4b) below and the hydrostatic approximation, which is the
following approximation to the vertical momentum equation (B9),

£ =—gp. (3.12.2)
The use of P in these equations rather than p serves to remind us that in order
to retain the usual units for height, density and the gravitational acceleration,
pressure in these dynamical equations must be expressed in Pa not dbar.

The so called “thermal wind” equation is an equation for the vertical
gradient of the horizontal velocity under the geostrophic approximation.
Vertically differentiating Eqn. (3.12.1) and using the hydrostatic equation Eqn.
(3.12.2), the thermal wind can be written

2
o = [ () = ST, - B @iy

where V is the projected lateral gradient operator in the isobaric surface (see

Eqgn. (3.11.3)). The last part of this equation relates the “thermal wind”, f'v_, to
the pressure gradient in the neutral tangent plane. Note that the Boussinesq
approximation has not been made to derive any part of Eqn. (3.12.3). Under the
Boussinesq approximation, V o is approximated by V_p, and the last term in
Eqn. (3.12.3) is approximated as —N* kxV,z. The derivation of Eqn. (3.12.3)

proceeds as follows. To go from the second part of Eqn. (3.12.3) to the third part
use is made of

Vp=Vp+pVz and VP=0=VP+PVz  (3124ab)

%/

ON

To go from the third part of Eqn. (3.12.3) to the final part, use is made of Eqn.
(3.124a)and V p = V_p + p_V, z, which, when combined gives
Vp=Vp-p(Vz-Vz) (3.12.5)
Now Eqn. (3.12.4b) is used together with V. P = V_P + PV z to find
V,P=P(V,z-V ), (3.12.6)
and this is substituted into Eqn. (3.12.5) to find
V,p=V,p-p.V,P/P. (3.12.7)
Now along a neutral tangent plane we know that V p = pxkV P (k is the

isentropic and isohaline compressibility of seawater) and substituting this into
127
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. . N2
Eqn. (3.12.7) leads to the final expression of Eqn. (3.12.3), namely =~ kxV P

(recognizing that the buoyancy frequency is defined by N* = g(K‘PZ - % pz) )-
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Neutral helicity

From page 94 of these lecture notes we know that the normal n to the neutral
tangent plane is given by
N T - _ ! 2
g N°n =-p Vp+xVP = —p (Vp VP/c ) (G.11)
= a°Ve - BoVvs,.

It is natural to think that all these little tangent planes would link up and form a
well-defined surface, but this is not actually the case in the ocean. In order to
understand why the ocean chooses to be so ornery [bad-tempered] we need to
understand what property the normal n to a surface must fulfill in order that
the surface exists. We will find that this property is that the scalar product of the
normal of the surface n and the curl of n must be zero everywhere on the
surface; that is n-V xn must be zero everywhere on the surface.

In general, for a surface to exist in (x, y,z) space there must be a function
q)(x, y,z) that is constant on the surface and whose gradient V¢ is in the
direction of the normal to the surface, n. That is, there must be an integrating
factor b(x, y,z) such that V¢ =bn. Assuming now that the surface does exist,
consider a line integral of bn along a closed curved path in the surface. Since
the line element of the integration path is everywhere normal to n, the closed
line integral is zero, and by Stokes’s theorem, the area integral of V x(bn) must
be zero over the area enclosed by the closed curved path. Since the area element
of integration dA is in the direction mn, it is clear that Vx(bn)-dA is
proportional to Vx(bn)~n. The only way that this area integral can be
guaranteed to be zero for all such closed paths is if the integrand is zero
everywhere on the surface, that is, if Vx(bn)-n = (Vbxn)-n + b(Vxn)-n =0,
thatis, if n-Vxn =0 at all locations on the surface.

For the case in hand, the normal to the neutral tangent plane is in the
direction a®VO - B°VS, and we define the neutral helicity H" as the scalar

product of a®°VO — 5°VS, with its curl,

H" = (a°VO - °VS,)-Vx(a°Ve - g°Vs,) . (3.13.1)

Neutral tangent planes (which do exist) do not link up in space to form a well-
defined neutral surface unless the neutral helicity H" is everywhere zero on the
surface.

Recognizing that both the thermal expansion coefficient and the saline

contraction coefficient are functions of (S 0, p), neutral helicity A" may be
expressed as the following four expressions, all of which are proportional to the
thermobaric coefficient Tb(a of the equation of state,
H" = B°TPVP-VS,xVO
= PB°TY(V,S,xV,0)k
= g 'N*12(V,PxV,0) -k
~ g 'N’T2(V,PxV,0) -k

(3.13.2)

where P, is simply the vertical gradient of pressure (Pam™') and V,© and

V O are the two-dimensional gradients of © in the neural tangent plane and in

the horizontal plane (actually the isobaric surface) respectively. The gradients
VP and V O are taken in an approximately neutral surface. Neutral helicity

has units of m™. Recall that the thermobaric coefficient is given by

O = ﬁ@(a@/ﬁ@)P = a®- (a@/ﬁ@)ﬁ‘g : (3.8.2)
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The geometrical interpretation of neutral helicity

How can we understand neutral helicity H" geometrically? Recall the
definition of a neutral tangent plane, Eqn. (3.11.2), namely

-p'Vp+kV P = a®°VO-°V S, =0. (3.11.2)
This implies that the two lines VPxVp and VOxVS, both lie in the neutral
tangent plane. This is because along the line VPxVp both pressure and in situ

density are constant, and along this line the neutral property is satisfied.
Similarly, along the line VO x VS, both Conservative Temperature and Absolute

Salinity are constant, which certainly describes a line in the neutral tangent
plane. Hence the picture emerges below of the geometry in (x, y,z) space of six
planes, intersecting in one of the two lines VPxVp and VOxVS, . The neutral

tangent plane is the only plane that includes both of these desirable lines.
Why are these lines “desirable”? Well VPxVp is desirable because it is

the direction of the “thermal wind”, and VO x VS, is desirable because adiabatic

and isohaline motion occurs along this line; a necessary attribute of a well-bred

“mixing” plane such as the neutral tangent plane.
neutral tangent plane

Prolonged gazing at the above figure while examining the definition of
neutral helicity, H", Eqn. (3.13.2), shows that neutral helicity vanishes when the
two vectors VPxVp and VOXVS, coincide, and that this occurs when the two-

dimensional gradients V © are V P parallel.

Neutral helicity is proportional to the component of the vertical shear of the
geostrophic velocity (v,, the “thermal wind”) in the direction of the

temperature gradient along the neutral tangent plane V, 0, since, from Eqn.
(3.12.3) and the third line of (3.13.2) we find that
H"=pIPf.-V.O. (3.13.3)

Interestingly, for given magnitudes of the epineutral gradients of pressure
and Conservative Temperature, neutral helicity is maximized when these
gradients are perpendicular since neutral helicity is proportional to

7Y (V,PxV,0)-k (see Eqn. (3.132)), while the dianeutral advection of

thermobaricity, e®=— gN 2K TbG)V,,G)-VnP, is maximized when V, © and V, P
are parallel (see Eqn. (A.22.4)).
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Because of the non-zero neutral helicity, H", in the ocean, lateral motion
following neutral tangent planes has the character of helical motion. That is, if
we ignore the effects of diapycnal mixing processes (as well as ignoring
cabbeling and thermobaricity), the mean flow around ocean gyres still passes
through any well-defined “density” surface because of the helical nature of
neutral trajectories, caused in turn by the non-zero neutral helicity. We will
return to this mean vertical motion caused by the ill-defined nature of “neutral
surfaces” in a few pages.

approximately
neutral surface

The skinny nature of the ocean; why is the ocean 95% empty?
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The above diagram contains all of the ocean hydrography below 200 dbar from

both the North and South Atlantic ocean. The colour represents the latitude,
with blue in the south, red in the north and green in the equatorial region. It is
seen that the data fill the area on this §, —© diagram, leaving no holes.

When considering the plotting of this same data on a three-dimensional
S, —0-p “plot”, one could be forgiven for thinking that the data would fill in a
solid shape in these three dimensions. But this is not observed. Rather than the
§,—0-p data occupying the volume inside, say, a packet of Toblerone
chocolate, instead, the data resides on the cardboard of the Toblerone packet and
the chocolate is missing.

131



2000

3000

Thermodynamics Lectures, MIT, 2015

132

132



Thermodynamics Lectures, MIT, 2015 133

133



Thermodynamics Lectures, MIT, 2015 134
The skinny nature of the ocean; implication for neutral helicity

If all the (S 10, p) data from the whole global ocean were to lie exactly on a
single surface in (S 10, p) space, we will prove that this requires
VS, xVO-VP = 0 everywhere in physical (x, v, z) space. That is, we will prove
that the skinniness of the ocean hydrography in (SA,G), p) space is a direct
indication of the smallness of neutral helicity H".

Since, under our assumption, all the (S 10, p) data from the whole global
ocean lies on the single surface in (S 10, p) space we have

f(s,.0,p)=0 (Twiggy_01)
for every (S 0, p) observation drawn for the whole global ocean in physical
(x, v, z) space. Taking the spatial gradient of this equation in physical (x, v, z)
space we have Vf =0 since f is zero at every point in physical (x, v, z) space.
Expanding Vf in terms of the spatial gradients VS,, VO, and VP, and taking
the scalar product with VS, XxVO we find that

g—{) VP-VS§, xVO = 0. (Twiggy_02)

550
In the general case of f, # 0, the result VP-VS, xVO = 0 is proven. In the
special case f, = 0, f is independent of P so that we have a simpler equation
for the surface f', being

f(s,.0) =0, (Twiggy_03)
which is the equation for a single line on the (S A,@) diagram; a single “water-
mass” for the whole world ocean. In this case, changes in §, are locally

proportional to those of © so that VS, XxVO = 0 which also guarantees our
required relation VP-VS§, xVO = 0.

Hence we have proven that the skinniness of the ocean hydrography in
(SA,G), p) space is a direct indication of the smallness of neutral helicity
H" = B°TPVP-VS, xVO.
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The skinny nature of the ocean; demonstrated from data at constant
pressure

The diagram below is a cut at constant pressure through the above three-
dimensional §, -©-p data. The cut is at a pressure of 500 dbar . This diagram
illustrates the smallness of neutral helicity from the perspective of the equation
H" = PR°TO(V S, xV O)k.
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The skinny nature of the ocean; demonstrated from data on Neutral
Density surfaces

Here the “skinny” nature of the ocean will be demonstrated by looking at data on
approximately neutral surfaces; Neutral Density y" surfaces. The following lines

of the equation for neutral helicity
H" = g' N’T?(V,PxV 0) k 5132
~ g 'N*18(V,PxV,0)k o

show that neutral helicity A" will be small if the contours of P and of ® ona y"
surface are lined up; thatisif V P and V © are parallel.

The ocean seems desperate to minimize H"; either V P and V © are
parallel or where they are not parallel, one of V P or V © is tiny.
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Notice the rather large range of potential density of 0.28kgm™

Density surface. Also, the value of potential density at the northern hemisphere

outcrop is larger than that at the southern hemisphere outcrop by about 0.1 kgm™.
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The above plots confirm that the ocean is rather “skinny” in (S 0, p) space and
hence that neutral helicity H" is small in some sense (small compared to what?).

Note that while for some purposes a zero-neutral-helicity ocean,

f(s,.0,p)=0 (Twiggy_01)
might be a reasonable approximation, this f (SA,G, p) = 0 surface is multi-
valued along any particular axis. We saw this on the rotating view of the data in
three (S 10, p) dimensions. This multi-valued nature is also apparent on the
last figure which is of only one approximately neutral surface. A slightly denser
surface would have the same (S A,@) values in the Southern Atlantic as the
above plot has in the North Atlantic.

Note also in the above figures that where a particular Neutral Density
surface comes to the surface (outcrops) in the North Atlantic, it has a greater
potential density than in the Southern Ocean by between 0.07kgm™ and
0.14kgm™. This is a general feature of the ocean; approximately neutral
surfaces have different potential densities even at the reference pressure of that
potential density. The northern hemisphere and southern hemisphere parts of a
single ocean are separate branches in these multi-valued spaces.
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Consequences of non-zero neutral helicity

This diagram below is a simple example of the ill-defined nature of a “neutral
surface” and the implication for mean dianeutral motion. The lateral mixing
which causes the changes of S, and © along this path occur at very different
pressures. It is the rotation of the isopycnals on the §, —© diagram (because of
the different pressures) that causes the ill-defined nature of “neutral surfaces”,
that is, the helical nature of neutral trajectories. In this example V P and V ©
are at right angles, thatis, V_ P-V © = 0.
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The cork-screwing motion as fluid flows along a helical neutral trajectory causes
vertical dia-surface flow through any well-defined density surface. This mean
diapycnal flow occurs in the absence of any vertical mixing process. That is, this
mean vertical advection occurs in the absence of the dissipation of turbulent
kinetic energy, and is additional to the other dianeutral advection processes,
thermobaricity and cabbeling.

approximately
neutral surface
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