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What causes the adiabatic lapse rate?

Traditional Correct
35~ —————— - 35 =
e N (@ ——— (]
30f ..bo N %on, 30 ] _
¥ T M s ———_ | p=0dbar
- | o N W W 20 O ~—~—00 ]
8 pa e w0 (MK/Mpa)
am_‘ e N \ 10l T ~———_ ]
5 T~ ‘79'0”\ 5‘-_"»_ T ~8—
0 - S ~— S — e
g - 00119 "“\:0-_0114 ~ . o -
s
0 10 20 30 40 0 10 20 30 40
35 < < 35 3
Y \ Te) wfe— A‘d’i
A N S ] =— | p=1000 dbar
20f "06-\._ \ '02‘»\ 2046~ _ B
g15 oy }‘».‘7 »‘»_ -_‘» 15—~ i T e (mK/Mpa)
© 1.1 e o o S e
L[] ~ : 08— ~——_|
5| .14 -~ ’06 8~ o ‘
e e ey = e e
o~ - . 0 —_ Pemen
I —— ,sb
0 10 20 30 40 0 10 20 30 40

The adiabatic lapse rate is (a) proportional to the thermal expansion
coefficient and (b) is independent of the fluid’s compressibility. Indeed, the
adiabatic lapse rate changes sign at the temperature of maximum density (where
a',a® and a® all change sign) whereas the compressibility is always positive.
This change in sign of the adiabatic lapse rate I" occurs even though the work
done by compression, ( p+PO)dv , is always positive (for a increase in pressure).

Hence, in cold lakes where the thermal expansion coefficient is negative, the
adiabatic lapse rate is negative, so that as the pressure is increased adiabatically,
the in situ temperature actually decreases! The adiabatic lapse rate I" represents
that change in temperature that is required to keep the entropy (and also € and
©) of a seawater parcel constant when its pressure is changed in an adiabatic
and isohaline manner.

The traditional explanation has found its way into our textbooks because it
works perfectly for a perfect gas; the missing term that we identified just
happens to be zero for a perfect gas, but it is the dominant term for a liquid.

Remember, the adiabatic lapse rate has nothing whatsoever to do with the
( p+PO)dv work done in changing the internal energy of a fluid parcel. This
explanation is wrong even for a perfect gas (where you get the right answer for
the wrong reason); for a liquid it is wrong by orders of magnitude.
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The adiabatic lapse rate and the potential temperature of ice Ih

Ice Th is the form of ice with hexagonal packing of the water molecules. This is
the form of ice that is found in the range of temperatures and pressures found on
planet earth.

The adiabatic lapse rate is equal to the change of in situ temperature experienced
when pressure is changed while keeping entropy (and salinity) constant. This
definition applies separately to both ice and seawater (where one needs to keep
not only entropy but also Absolute Salinity constant during the pressure
change). In terms of the Gibbs functions of seawater and of ice Ih the adiabatic
lapse rates of seawater I' and of ice T'™ are expressed respectively as
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where o' and a™ are the thermal expansion coefficients of seawater and ice Th
respectively with respect to in situ temperature.

The adiabatic lapse rates of seawater and of ice are numerically substantially
different from each other. The thermal expansion coefficient of ice does not
change sign as does that of seawater when it is cooler than the temperature of
maximum density, and the specific heat capacity of ice cLh is only approximately
52% that of seawater ¢ .

Figure Ice_1(a) below shows the ratio F/ '™ of the adiabatic lapse rates of
seawater and ice at the freezing temperature, as a function of the Absolute
Salinity of seawater and pressure. For salinities typical of the open ocean, the
ratio F/ '™ is about 0.1 indicating that the in situ temperature of ice varies ten
times as strongly with pressure when both seawater and ice Ih are subjected to
the same isentropic pressure variations. This must be taken into account when
considering the vertical motion of frazil ice and the vertical motion of seawater
and frazil ice mixtures.
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Figure Ice_1. (a) The ratio of the adiabatic lapse rates of seawater and of ice Ih,
F/ '™, at the freezing temperature. (b) The difference (in °C) between the
potential temperatures of seawater 6§ and of ice ™ for parcels of seawater and
ice whose in situ temperature is the in situ freezing temperature.
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The freezing temperature of ice in contact with seawater

The freezing of seawater occurs at the temperature #; .~ at which the

chemical potential of water in seawater " equals the chemical potential of ice

Ih

u". Hence the freezing temperature ¢ is found by solving the implicit

freezing
equation
w _ Th
u (SA’ tfreezing’p) =H ( tfreezing’p) 4 (Ice_3)
or equivalently, in terms of the two Gibbs functions,
Th
g(SA’ ZLfreezing’p) - SA gSA (SA’ tfreezing’p) =8 ( tfreezing’p)' (Ice_4)

The freezing in situ temperatures derived from Eqn. (Ice_4) were converted to
the Conservative Temperature at which air-free seawater freezes and are shown
in Figure Ice_2(a) as a function of pressure and Absolute Salinity. You can see
that whether a water molecule prefers to remain in seawater or prefers to join
the solid matrix of water molecules called “ice” depends on the salinity of the
seawater and on pressure.
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Figure Ice_2. (a) The Conservative Temperature (in °C) at which air-free
seawater freezes as a function of pressure and Absolute Salinity. (b) The
difference between the freezing Conservative Temperature derived from EOS-80
and that of TEOS-10, with the contours being in mK.
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The figure below is another way of plotting the freezing temperature of seawater.
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Figure Ice_3. The in-situ freezing temperature (in °C) of air-free
seawater as a function of pressure (in dbar ) and Absolute Salinity,
determined from the equilibrium freezing condition Eqn. (Ice_4). In
the context of sea ice, the in situ temperature is the temperature of

both the pure ice Th phase ™ and of the trapped pockets of brine.
P P pped p

When discussing the thermodynamic equilibrium between seawater and ice
in the oceanographic context there are two common situations. One is called
“sea ice” where there are trapped pockets of seawater inside a matrix of ice
crystals. This trapped seawater is commonly called “brine” as its salinity can be
very large when the temperature is cold.

The other situation is where there are small ice crystals (frazil) are suspended
in a much larger volume of seawater so that the mass fraction of ice is small.

In both situations the ice and the seawater exist in thermodynamic
equilibrium, so that their in situ temperatures are the same. However, as we
have seen, the potential temperatures of the ice and seawater phases are
different (unless the sea pressure is zero).
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Melting of ice into seawater

The First Law of Thermodynamics says that when a process occurs at
constant pressure, and without any external input of energy with the
environment, then total enthalpy is conserved.

So the conservation equations for mass, salt and enthalpy during an adiabatic
melting event at constant pressure are

f

Mgy = méw +my, (Ice_5)
Mgy Sy = Mgy Sk, (Ice_6)
mi bt = mi h + m A" (Ice_7)

The superscripts i and f stand for the “initial” and “final” values, that is, the
values before and after the melting event, while the subscripts SW and Ih stand
for “seawater” and “ice Ih”. The mass of ice m,, is assumed to melt completely,
so in the final state there is no ice as all; it is all seawater.

The mass, salinity and enthalpy conservation equations (Ice_5) — (Ice_7) can
be combined to give the following expressions for the differences in the Absolute

Salinity and the specific enthalpy of the seawater phase due to the melting of the
ice,

(s5-83) = - m-si = —w"s, (Ice_8)
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(hi - hlh), (Ice_9)

where we have defined the mass fraction of ice Ih w" as my, / msfw . The initial
and final values of the specific enthalpy of seawater are given by
W= h(S;,ti,p) = l;(Sj\,@i,p) and A" = h(Si,tf,p) = fz(Si,G)f,p). These equations
are illustrated in the following diagram
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Figure Ice_4(a). This Absolute Salinity — enthalpy diagram illustrates Eqns.
(Ice_8) and (Ice_9) which embody the conservation of Absolute Salinity and
enthalpy when ice Ih melts into seawater at fixed pressure. The initial values of
the Absolute Salinity and enthalpy of seawater and of ice Ih are shown by the
two solid dots, and the final values of Absolute Salinity and enthalpy of the
seawater after the ice has melted are shown by the four open circles (for four

Ih).

different values of the ice mass fraction w These final values lie on the

straight line on this diagram that connects the initial values (the solid dots).
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seawater

Th

Figure Ice_4(b). The same initial and final data are shown on the Absolute
Salinity — in situ temperature diagram. Note that the final points (the open
circles) do not lie on the straight line connecting the initial points (the solid dots)
on this diagram.

The final values of Absolute Salinity, St , and enthalpy, 4", given by Eqns.
(8) and (9) are illustrated in Fig. Ice_4(a) for four different values of the ice mass
fraction w" (the four open circles). These final values, (Sf\,hf), lie on the
straight line on the Absolute Salinity - enthalpy diagram connecting (Sj\, hi) and
(0, hlh). The fact that the same data does not fall on a straight line on the
Absolute Salinity — in situ temperature diagram in Fig. Icw_4(b) nicely illustrates
that temperature is not conserved when melting occurs.

The linearized expression for the S, —© ratio when melting occurs

Here we linearize equations (Ice_8) and (Ice_9) to find the expressions
(Ice_16) — (Ice_18) for the ratio of the changes in salinity and temperature when a
vanishingly small mass fraction of ice melts into seawater at a given pressure.

The enthalpy difference 4" — 4" in Eqn. (Ice_9) is expanded as a Taylor series
in the differences in Absolute Salinity and temperature, and the first order terms
in these differences are retained, leading to

£ i st _si\p = (S/f\_S/i\) o) = (g i Iee 10
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where ¢ is the specific heat capacity of seawater, ¢, = ah/ar\ and

h
Sa
to Absolute Salinity at constant in situ temperature and constant pressure.

=0h as is the derivative of the seawater specific enthal w1tﬁ respect
T P Py p

By regarding specific enthalpy to be a function of Conservative Temperature
in the functional form fz(S 10, p) the Taylor series expansion of Eqn. (Ice_9)
yields

Si-Si)
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where h =oh/ 8@)‘ is the partial derivative of the seawater specific enthalpy
with respect to Conservatlve Temperature © at fixed Absolute Salinity, and
hAsA = 0h/dS A|® , is the partial derivative of the seawater specific enthalpy with
respect to Absolute Salinity at fixed Conservative Temperature ©. These

equations can be rewritten as

6Tc, = (tf—ti)cp = 7(Sf Sl)
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The bracket on the right-hand side of Eqn. (Ice_12), h— Wt s AhSA , if evaluated

at the freezing temperature Lteezing (S A p) , is the latent heat of melting (that is,
the isobaric melting enthalpy) of ice into seawater. Note that at p = 0 dbar ﬁSA is

zero while hg is nonzero.
A

The derivation of the isobaric melting enthalpy in Feistel et al. (2010) and I0C
et al. (2010) considered the seawater and ice to be in thermodynamic equilibrium
during a slow processes in which heat was supplied to melt the ice while
maintaining a state of thermodynamic equilibrium during which the
temperature of the combined system changed only because the freezing
temperature is a function of the seawater salinity. During this reversible process
the enthalpy of the combined system increased due to the heat externally
applied. The latent heat of melting is defined to be (from Eqn. (3.34.6) of IOC et
al. (2010))

Li[ (SA’p) = h(SA’tfreezing’p)_ hlh(tfreezing’p) - SAhSA (SA’tfreezing’p)' (Ice_14)

In contrast, the present derivation (that is, Eqns. (Ice_12) and (Ice_13)) applies
to the common situation when the seawater is warmer than the ice which is
melting into it, so that the two phases are not in thermodynamic equilibrium with
each other during the irreversible melting process. That is, the seawater
temperature may be larger than its freezing temperature and the ice temperature
may or may not be less than its freezing temperature. The guiding
thermodynamic principle is that there is no change in the enthalpy of the
combined seawater and ice system during the irreversible melting process, since
this process occurs adiabatically at constant pressure.

When freezing (as opposed to melting) is considered, the Second Law of
Thermodynamics implies that spontaneous freezing cannot occur except when
the seawater is at the freezing temperature, and there must be some incremental
external change (for example a decrease in pressure in the case of frazil
formation, or a loss of heat from the system) in order to induce the freezing.

Taking the limit of melting a small amount of ice into a seawater parcel so
that the changes in the seawater temperature and salinity are small, we find
from Eqn. (Ice_12) that the ratio of the changes in in situ temperature and
Absolute Salinity are given by (using Eqn. (Ice_8) for the salinity increment)

h—hn"— S, h
SA5t A'ls,
A

Cc
melting at constant p P

h(SA,t,p) - hlh(tlh,p) -8, hSA(SA,t,p)
cp(SA’t’p)

while the corresponding ratio of the changes in Conservative Temperature and

(Ice_15)

Absolute Salinity are (from Eqn. (Ice_13))
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melting at constant p ©
h(S.0.p) = H"(e™, p) = S,k (5,.0.p)
l;(a(SA,G,p) ’

(Ice_16)
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where the second lines of these equations have been included to be very clear
about how these quantities are evaluated. At p =0 dbar these equations become

o 0 _ RS, g (54.6,0)
* A lmelting at p=0 CP (SA’Q’O) (Ice 17)
h(S,.6.0) = A" (6™,0) = 5, g (5,.6.0) B
- c,(8,.6.0) '
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o jth elh’o
5, _ M _o- # (Ice_18)
SA melting at p =0 CP CP

where the potential temperatures of seawater 6 and of ice 8™ are both
referenced to p=0dbar. Note that the potential enthalpy of seawater
referenced to p=0dbar, hozh(SA,G,O)zi;(SA,G),O) is simply cg times
Conservative Temperature © where cg is the constant “specific heat”
¢y =3991.867957 11963 Jkg K™,

The use of Conservative Temperature rather than potential temperature
means that the slope of the melting process on the S, —© diagram, 80/8S,,
involves a simpler expression, especially when the melting occurs at the sea
surface at p =0dbar, Eqn. (Ice_18), where (i) AhAsA(S A,@,O) is zero, and (ii), the

relevant “specific heat capacity” of seawater, &y = cE (T0+t) / (TO+9), reduces to
0

p

by the Conservative Temperature ®. Note that the numerator of the middle

the constant cg , so that the specific enthalpy of seawater is simply ¢, multiplied
expression of Eqn. (Ice_18) is simply the difference between the potential
enthalpies of seawater and of ice.

Note that the right-hand side of Eqn. (Ice_18) is independent of the Absolute
Salinity of the seawater into which the ice melts.

We first illustrate these equations for the ratio of the changes of Conservative
Temperature to those of Absolute Salinity by considering the melting to occur
very close to thermodynamic equilibrium conditions. If both the seawater and
the ice were exactly at the freezing temperature at the given values of Absolute
Salinity and pressure, then no melting or freezing would occur. In Fig. Ice_5 we
consider the limit as the temperatures of both the seawater and the ice approach

the freezing temperature. The ratio §0/5S, from Eqn. (Ice_16) is shown

equilibrium
in Fig. Ice_5(a) with the seawater enthalpy evaluated at the freezing
Conservative Temperature and with the ice enthalpy evaluated at the in situ
freezing temperature, at each value of pressure and Absolute Salinity. This ratio

is proportional to the reciprocal of Absolute Salinity, so it is more informative to

simply multiply 80/8S, by Absolute Salinity S, and this is shown in

equilibrium
Fig. Ice_5(b). It is seen that the melting of a given mass of ice into seawater near
equilibrium conditions requires between approximately 81 and 83 times as much
heat as would be required to raise the temperature of the same mass of seawater

by 1°C.

The corresponding result for the ratio of the changes of in situ temperature

and Absolute Salinity near equilibrium conditions
S, 51/5SA cquilbrium = Lil (SA,p)/cp (SA,tfreeng,p) can be calculated from qu:l.
(Ice_15), and the difference between S, 6t / oS, cquilibrium and S, 60 / oS, cquilibrium 1S
shown in Fig. Ice_5(c). The largest contributor to this difference between Eqns.
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73

(Ice_15) and (Ice_16) is due to the dependence of the specific heat capacity

c, (S aieezing? p) on (i) Absolute Salinity, involving a 6.8% variation over this full

range of salinity, and (ii) on pressure, involving a change of 2.2% between 0 dbar

to 3000 dbar .
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(a) The ratio of the change of Conservative Temperature to that of

Absolute Salinity when the melting occurs very near thermodynamic equilibrium

conditions, 5@/ oS,

equilibrium

, from Eqn. (Ice_16) with the seawater enthalpy

evaluated at the freezing Conservative Temperature and with the ice enthalpy

evaluated at the in situ freezing temperature, at each value of pressure and

Absolute Salinity. The values contoured have units of K( g kg_l)

(b) This panel is simply Absolute Salinity S, times the values of panel (a), that

is, it is the right-hand side of Eqn. (Ice_16), evaluated at equilibrium conditions.
(c) The right-hand side of Eqn. (Ice_15) minus the right-hand side of Eqn.
(Ice_16), both evaluated at equilibrium conditions, illustrating the difference

between using in situ temperature versus Conservative Temperature.

The

quantities contoured in panels (b) and (c) have units of temperature, K.

Equation (Ice_16) for S, 80/8S,

_ is now illustrated when the
melting at constant p

seawater and the ice Ih phases are not at the same temperature and they are not in

thermodynamic equilibrium at the freezing temperature. We begin by considering

melting of ice Ih at the sea surface, specifically at p =0 dbar, when Eqn. (Ice_16)

reduces to Eqn. (Ice_18), and this equation is illustrated in Fig. Ice_6(a) which

applies at all values of Absolute Salinity. The contoured values of Fig. Ice_6(a),
(ho - hgh)/c?) =0 - ﬁlh(elh)/cg, increase as 1.0 times changes in © and
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decrease approximately as c;h / cg = (0.52 times changes in the temperature of the
ice.

Th
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Figure Ice_6. (a) Contours of Eqn. (Ice_18),

S, 80/58, melingatp =0 (ho - héh)/cf; =0 - Elh(elh)/cg , for the melting of ice Th
into seawater at p =0dbar. The six stars are at the freezing temperatures
(¢t and ©) for Absolute Salinity values starting at 5 gkg™' with increments of 5 gkg™'
up to 30gkg™. (b) Difference between contours of Eqn. (16) at p =500 dbar,
S, 80/58, meling atp = 500 and the corresponding ratio of panel (a) (where the pressure
was 0 dbar) at S, =S, =35.16504 g kg™'. The double-starred point is at the freezing
temperatures (¢ and ©) at p =500 dbar and S; =S, =35.16504 g kg™,
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Taking the potential enthalpy of ice Ih to be a conservative variable

By comparing panels (a) and (b) of Fig. Ice_6 we are able to deduce a very
important approximation that will prove invaluable to coupled ocean/ice
modelling. Panel (b) shows the error in assuming that it is the potential
enthalpy of ice that is conserved when ice melts into seawater, rather than taking
the enthalpy of ice to be conserved, which is the correct thing to do. At a
pressure of 500 dbar the assumption that the sum of the potential enthalpies of
ice and seawater are conserved leads to an error of 0.15% in the change in
Conservative Temperature of the seawater as a result of melting. Most of this
error is due to the assumption regarding ice, not seawater, since the error
involved with assuming that the Conservative Temperature of seawater is
totally conservative reaches a maximum of 0.15% only at a much larger pressure
of 4000 dbar (Graham and McDougall, 2013).

The ratio of Eqns. (Ice_16) to (Ice_18) is

00|
Almelting at constantp (TO+0) h=h" — Sa hASA
50 ()| By - A
0S8, melting at p = 0 (Ice_19)
(om0 (e |(a-h)- ()< s
R Y e R

and the combination of enthalpy differences in the numerator of the last term
can be expressed as

1=ty = (" 1) = 5, | =

P P (Ice_20)
[[3(5..0. )= 5"(0", ') [aP" = 5, [ 55 (5.0, p')dP".
0 By

The last term here is small, showing that the dominant contribution is simply the
pressure integral of the difference in the specific volumes of seawater and of ice.

In Eqn. (Ice_19) the second term on the right-hand side, (G—t) / (T0+ t), is
small compared with the third, so that the non-unity nature of Eqn. (Ice_19) can
be understood as being due to this third term, evaluated with the aid of Eqn.
(Ice_20), and this evaluation agrees with the plot of Fig. Ice_6(b).

We will take advantage of the smallness of panel (b) versus panel (a) of Fig.
Ice_6, or equivalently, the fact that Eqn. (Ice_19) is quite close to unity, to treat
the potential enthalpy of ice as conserved during not only advection but also
during melting and freezing events. This will greatly reduce the complexity of
coupled ocean/ice numerical models. This approximation brings the same
simplicity to ice as the introduction of Conservative Temperature has brought to
physical oceanography, in that the only variables that now need to be
considered when discussing “heat” budgets of seawater and of ice are the
potential enthalpies of seawater and of ice.
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An illustration from the Amery Ice Shelf

Figure Ice_7 shows oceanographic data obtained under the Amery Ice Shelf
that illustrates the ratio of the changes in Absolute Salinity and Conservative
Temperature, as given by Eqn. (Ice_16), when melting of ice occurs. The vertical
profile named AMO06 begins under the ice at a pressure of 546 dbar and the
uppermost 175 of the vertical profile is shown. The data in the uppermost 50-
100 dbar is closely aligned with the ratio given by Eqn. (Ice_16) (as shown by the
dashed line) evaluated at this pressure and with the ice temperature being the
freezing temperature at this salinity and pressure. Two freezing lines are shown
in Fig. Ice_7(b), for pressures of 0 dbar and 578 dbar .

Any observations cooler than the freezing temperature appropriate to 0 dbar
is evidence of the influence of melting of ice or of heat lost by conduction
through the ice. AMO6 is located on the eastern side of the ice shelf in an area
that is melting, as can be inferred by the presence of ocean water at AMO06 that is
well above the in situ freezing temperature at the base of the ice shelf. This
water is thought to be flowing in a primarily southwards direction from the
open ocean as it enters the under-ice cavity. The other CTD profile was taken
from borehole AMO5, located on the western side of the ice shelf in an area that
is refreezing (as is drawn in panel (a)) and represents flow that has likely come
from deeper in the sub-ice-shelf cavity, than at AMO06 (Post et al., 2013) and hence
has been in contact with the ice for longer. The upper 50m or so of this cast is at
the freezing temperature of seawater at this pressure. For both casts the data
near the upper part of the water column has the ratio of the changes of S, and
O in close agreement to the ratio given by Eqn. (Ice_16), the ratio predicted from
melting ice into seawater (dashed lines). The ice temperature that is needed to
calculate this S, —© ratio for each location has been taken to be the in situ
freezing temperature of ice in contact with the seawater at the pressure at the
base of the ice shelf. Moreover, on this figure the uppermost 100m of data of the
AMO5 data is approximately related to that of the AMO06 data through the
S, —O ratio of Eqn. (Ice_16). This would be consistent with the notion that the
same fluid is proceeding from AMO6 to AMO05 without being exposed to
significant heat loss O to the ice (see panel (a)). The vertical profiles shown in
panel (b) are the average of several vertical profiles taken over the course of two
days, and the two locations were drilled within two weeks of each other.
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Figure Ice_7. (a) Sketch of the flow under an ice shelf. An inflow of relatively
warm water from the open ocean provides heat to melt the ice shelf. Buoyant
freshwater that is released during the melting process rises along the underside of
the ice shelf and can become locally supercooled at a shallower depth, leading to
the formation of frazil and basal accretion of marine ice.

(b) The top 175m of two CTD profiles taken below the Amery Ice
Shelf in East Antarctica at a melt site and at a refreeze site are shown. The warmer
and saltier of the two casts is AMO6 (see Fig 1 of Galton-Fenzi ef al. (2012)) starting
at a pressure of 546 dbar. The large round dot is ocean data very near the ice at
546 dbar, the triangle is 50 dbar deeper, the diamond 100 dbar deeper and the star
is 150 dbar below the bottom of the ice shelf at this location, indicated by the
circle. The other vertical cast, AMO5, is typical of re-freezing locations. The
uppermost 50 dbar of this cast is all at the freezing temperature at this pressure.
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Melting of sea ice into seawater

Sea ice contains a certain mass fraction of brine trapped inside the ice matrix.
Sea ice is produced when the surface of the ocean is cooled rapidly by very cool
air. The ice crystals then form so fast that some of the seawater is trapped in
small “pockets” inside the matrix of ice crystals.

We can quantify the melting of sea ice into seawater by conserving the same
three quantities, namely (i) mass, (ii) salt, and (iii) enthalpy, leading to

(see McDougall, T. J., P. M. Barker, R. Feistel and B. K. Galton-Fenzi, 2014:

Melting of ice and sea ice into seawater, and frazil ice formation. Journal of

Physical Oceanography, 44, 1751-1775.  for details)

f Qi _ seaice i gseaice| _ _ _ seaice [ gi _ gseaice
(S5 -83) = — Posiee (5] - gyme) =y () — gy
mSW

(hf _ hl) - _ Wseaice(hi _ hIh) + wseaice mbrinc (hbrine _ hlh)
mseaice

- _ Wscaicc (hl _ hscaicc) )
where the specific enthalpy of the composite material “seaice” is defined as the
mass-weighted sum of the specific enthalpies of the two phases,
i Th bri
hscalcc = (mlh/mseaice)h + (mbrine/mseaice)h rmc’

and the Absolute Salinity — enthalpy mixing diagram looks like
A

h, .

}iealce seawater
seaice
Sa R
0F——— >
_______ Sa
(b)

t

tsealce seawater

S ‘/ieaice //7@/.
@/8’
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79

For sea ice melting into seawater at p =0 dbar with initial properties

A .
seaice
SA

S\ =Ss, =35.16504 g kg™, © =4°C, and with the sea ice salinity taken to be
=5gkg™', the change in Conservative Temperature is shown in the left-

hand figure below. The right-hand figure shows the corresponding plot when

S/s\eaice =0 gkg—l .
0
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What is the ratio of the changes in Conservative Temperature and Absolute
Salinity of seawater when a vanishingly small mass of sea ice melts into it?
To find this ratio we again linearize the above expressions for a vanishingly
small mass fraction of sea ice that melts, giving

(SA - S;eai“)%

A melting at constant p

Sseaice . seaice ‘ . A

= /?Jrine (h_hlh N SAhSA) * S/]:rine (h h hbnne - I:SA - S/t;nne:IhSA)
A A
h@

and this is illustrated below at p =0 dbar and at S; =S, =35.16504 ¢ kg™ and
e'=1°C.

(SA - SA) 65?

A melting atp =0

in-situ temperature of sea ice (°C)

10 15

sea ice salinity (g kg™")
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Frazil ice formation

When seawater at the freezing temperature undergoes upwards vertical motion
so that its pressure decreases, frazil forms, primarily due to the increase in the
freezing temperature as a result of the reduction in pressure. When this mixture
of seawater and frazil continues to rise to lower pressures (assisted by the
buoyancy provided by the presence of the ice), the frazil crystals will experience
a larger change in in situ temperature than does the seawater, simply because
the adiabatic lapse rate of ice is much larger (ten times as large) than that of
seawater (as we have found above).

We will here consider this situation under the assumption that the frazil and
the seawater moves together, so ignoring the tendency of the frazil to rise faster
than the seawater, driven by the buoyancy of the individual ice crystals. We
further assume that the uplift rate is sufficiently small that the in situ
temperature of the ice and the seawater are the same at each pressure, this
temperature being the freezing temperature. Under these conditions no entropy
is produced during the freezing process, i.e., this freezing process is reversible
and can be reversed by increasing the pressure, leading to the related reversible
ice melt.

We will study the thermodynamics of this process of adiabatic uplift of a
seawater-ice mixture via a thought process composed of two separate steps (Fig.
Ice_13). First we imagine the mixture of pre-existing ice and seawater to
undergo a reduction in pressure but without any exchange of heat, water or salt
between the two phases. That is, during this first part of the process the mass of
ice and the mass of seawater remain constant, and the change in the enthalpy of
the ice and the change in the enthalpy of the seawater are only due to the
pressure change. During this adiabatic process an (infinitesimal) contrast in in
situ temperature will develop between the ice phase and the seawater phase
because the adiabatic lapse rate of ice is much larger (by about an order of
magnitude) than that of seawater.

During the second part of our thought experiment the ice and seawater
phases will be allowed to equilibrate their temperatures and further frazil ice
will form so that the temperature of both the ice and seawater phases and the
final Absolute Salinity of the seawater phase will be consistent with the freezing
temperature at this pressure. This part of our thought experiment occurs at
constant pressure and so, from the First Law of Thermodynamics, we know that
enthalpy is conserved.
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stage 2 stage 3

ice
formation

—

T5P<0

stage 1

Figure 13. Sketch showing the two-step thought process involved with
quantifying the formation of frazil ice Ih by the adiabatic uplift of a seawater
parcel which may contain pre-existing frazil ice. The step from stage 1 to stage 2
is undertaken without any exchange of heat or mass between the seawater and
ice Ih phases. While the in situ temperatures of the seawater and ice phases are
assumed to be identical at stage 1, at stage 2 they are unequal because the
adiabatic lapse rate of ice Ih is much larger than that of seawater. The step from
stage 2 to stage 3 is undertaken at constant pressure. In this step further ice
forms (as shown by the increase in number of the frazil ice crystals) and at the
end of this step, the seawater and ice phases have the same in situ temperature,
namely the freezing temperature appropriate to (i) that pressure and (ii) the final
value of seawater salinity.

Let the mass fraction of ice be w™; the mass fraction of seawater in the ice-
seawater mixture is then (1 - w[h). The total enthalpy per unit mass of the ice-
seawater mixture at stage 1 of Fig. 13 is the weighted sum of the specific
enthalpies of the two phases, namely

(1= w")i(S,.0,.1,) + W™ (61, ,), (Ice_34)

where we have chosen to write the specific enthalpy of ice in the functional form
A" (9”‘, p) where the temperature variable is the potential temperature of ice 6™
with reference pressure 0dbar (8™ is not to be confused with the potential
temperature of seawater 6, since these two potential temperatures are not
equal).

In going from stage 1 to stage 2, both the seawater and ice phases undergo an
adiabatic change of pressure 6 P which changes their specific enthalpies by véP
and v"§P respectively (here v and v" are the specific volumes). Hence at
stage 2 the total enthalpy per unit mass of the ice-seawater mixture is (noting
that wéh = wlIh and that at leading order in the perturbation quantities, it is
immaterial whether v and v are evaluated at the properties of stage 1 or those

of stage 2)
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(1 - wllh)[l;(S ®l,pl) +v5PJ + wllh [/;lh(ellh,pl) +v0 5P} . (Ice_35)

Al°

In going from stage 2 to stage 3, the total enthalpy of the mixture is
conserved. Hence we equate the total enthalpies at these two stages, giving

Al° 1

(1— wl]h)[l;(S @1,p1)+v5PJ + wllh[l;lh(elh,pl) +vlh5P} =

(1 - w;h)l;(S 93,p3) + w;thth(O;h,p3).

A3

For an externally-imposed change in pressure this equation may be regarded as
giving the amount of new ice formed wi" — w" due to the adiabatic uplifting of
the ice-seawater mixture. The other important constraint that we know is that
the ice-seawater mixture is at the freezing temperature at both stages 1 and 3.
This turns out to enough information to solve the problem.

The enthalpies l;(S 23203 p3) and A" (931}’, p3) on the right-hand side of Eq.
(Ice_36) are now expanded in a Taylor series about the values at stage 1, keeping
the leading order terms. The pressure derivatives of these enthalpies, being the
specific volumes of seawater and of ice, give terms that cancel with the
corresponding terms on the left-hand side of the equation to leading order. The

remaining leading-order terms are

(7= n™ o™ = (1= w")(hs 85, + g 80) - w"Rh 8™ = 0 (Ice_37)

Th Th

where 6w" = wi" — w". Since the salt always resides in the seawater phase, the

product (1 - Wﬂ S, is constant so that
S, 6w = (1 - wlh) 5S,, (Ice_38)

which reduces Eqn. (Ice_37) to

Th
h 0 r w 7
(1 = "= 5,55 )65, = S,ho00 - SAmh;f;h 5™ = ol (e 39)

One of our key results for frazil ice is already apparent from this equation,

namely that as the mass fraction of frazil ice w™ tends to zero, Eqn. (Ice_39)
tends to our existing result Eqn. (Ice_16) for the ratio 89/8S, for the melting of
ice Ih into seawater, repeated here,
_zIh I
h—nh A Sy hSA
melting at constant p h®
P Th(,Th 7
h(S,0.p) = H"(e™, p) = S, (5,.0.p)
hyS,.0.p)

However, there is an important difference as well, namely that the present frazil

P

A
A

(Ice_16)

ice relation Eqn. (Ice_39) for the ratio §0/8S, is actually simpler (or more
restrictive) than Eqn. (Ice_16) because the temperatures of both the ice and
seawater components are constrained to be at the freezing temperature; the ice
temperature cannot be lower that the freezing temperature nor can the
Conservative Temperature of the seawater exceed its freezing temperature.

Hence in the limit as the mass fraction of frazil ice w™

tends to zero, as the
pressure of a seawater-frazil mixture is changed, the ratio 80/8S, is illustrated
by the equilibrium situation of our existing Figures Ice_5(a) and (b). We will
return to this; for now this paragraph is just a heads up on the comparison
between what we have derived already (Eqn. (Ice_16)) and where we are headed

with the equations for frazil.
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Returning to the more general situation in which w'"

is not vanishingly
small, we need to evaluate ﬁ:l‘h 80™ in terms of differentials of Absolute Salinity

and pressure. The partial differential ﬁ:l‘h can be written as

o ahlh‘ ahlh| atlh‘ " o

o = 20" T ™| 26" T 7 oo™
p p p p

(Ice_40)

The in situ temperature of ice Ih can be expressed as a function of the
potential temperature of ice Th and pressure as ™ = ¢" (Glh, p) so that the total
differential of the in situ temperature of ice is

atlh

h _
dt = Y
p

do™ + r™dp. (Ice_41)

This equation applies to any material differentials df™, 4™ and dP, and in
particular will apply to the differences between these properties at stage 1 and
stage 3 of our thought process. Hence we can write

atlh

h _
ot = T

0™ + TP, (Ice_42)
p

But the ice at both stages 1 and 3 is at the freezing temperature

t so that 8™ can also be expressed as

freezing = tfreezing (SA’p )

6 t Th — atfreezing

ot .
5 SA + freezing
as,

oP

oP, (Ice_43)

P Sa
and the partial derivatives here are known functions of the Gibbs functions of ice

Ih and seawater.
Combining Eqns. (Ice_42) and (Ice_43) and using the result in Eqn. (Ice_40)

gives our desired result for 2" 5™, namely

oty .
5S. + freezing
A oP

p Sa

o, .
7Th Ih _ Ih freezing
Blh oo™ = | e

-T™|sP|. (Ice_44)
as,

Substituting this equation into Eq. (39) gives a relationship between only
6S,,00, and 0P, namely
h

. ot .
h— hlh_ Sh -8 w th freezing
ATy A(l_wlh) P 9S, ‘

8S, — S,h, 50

A0

! (Ice_45)

Th
w Th atfreezing _ rlh SP =0

A(l_WIh)CP oP

SA
Another relationship between 6S,,00, and 6P can be found from the
knowledge that in both stages 1 and 3 the seawater is at the freezing

Conservative Temperature, and since O ...
the differences 6S,,00, and §P are related by

is a function of only §, and P,

6@ — a®freezing
oS

A

0, .
5 SA + freezing

3p opP, (Ice_46)

Sa

P
and expressions for these partial derivatives are known in terms of the Gibbs
functions of seawater and of ice (we do not derive them here).

Eqns. (Ice_45) and (Ice_46) are two equations in 0S,, 00, and 6P from
which we can find our desired relations for the ratios of changes in our
seawater-frazil ice mixture due to adiabatic uplift, namely 80/8S, , 50/6P and
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8S,/6P. By eliminating the pressure difference from these two equations we
find that

ZLfreezing Th
ap | "
h
Th w Th atfree:zing Sa 00 freezing
h=h"=S.h. =8 c -
A A (To ) P as 00 EN
-w A ) freezing A »
opP s
00 A
Sy = . (Ice_47)
N
frazil al‘freezing _ Flh
wh op s
hy + o c;h A
(1 -w ) a(’-)freezing
oP
Sa
The leading terms in both the numerator and denominator, namely
Th T - . . .
h—h"-=S,h, and h, are the same as in Eqn. (Ice_16) which applies to the
Alls, o)
melting of ice Ih into seawater at fixed pressure, the only difference being that in
the present case both the ice and the seawater are at the freezing temperature.
So, as the mass fraction of ice tends to zero, Eqn. (Ice_47) tends to Eqn.
(Ice_16), so that at w™ =0 Eqn. (Ice_47) can be illustrated by Fig. Ice_5(a), which
is repeated below.
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Figure Ice_5. (repeat of this figure) (a) The ratio of the change of Conservative
Temperature to that of Absolute Salinity when the melting occurs very near
thermodynamic equilibrium conditions, 60/8S, cquilibrium * from Eqn. (Ice_16) with the
seawater enthalpy evaluated at the freezing Conservative Temperature and with
the ice enthalpy evaluated at the in situ freezing temperature, at each value of
pressure and Absolute Salinity. The values contoured have units of K( gkg™ )_

(b) This panel is simply Absolute Salinity S, times the values of panel (a), that
is, it is the right-hand side of Eqn. (Ice_16), evaluated at equilibrium conditions.

For non-zero ice mass fraction Eqn. (Ice_47) is plotted in Fig. Ice_14(a) at
S, =S =35.16504 gkg™ (actually what is plotted is 5@/5SA il )" The
dependence on the mass fraction of sea ice can be illustrated with the case
w" =0.1 when 6@)/5SA’ﬁaZiI is different to the value at w™ =0 by about 7.4%.
Most of this sensitivity to w"™ comes from the denominator in Eqn. (Ice_47).
Eqn. (Ice_47) is again illustrated in Fig. Ice_15(a) where we show contours of
S,80/85,|  at the fixed salinity S, =S, =35.16504gkg™ . That is, Fig.
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Ice_15(a) is simply 35.16504 gkg™' times Fig. Ice_14(a), so that the quantity

contoured in Fig. Ice_15(a) is in temperature units.
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Figure Ice_14. (a) Plot of 50/ 5SA’ﬁaZil from Eqn. (Ice_47) as a function of the ice
mass fraction w™ and pressure. (b) Plot of 50/ 5P‘frazil from Eqn. (Ice_48) as a
function of the ice mass fraction w" and pressure. (c) Plot of 85 N / 6P|frazi1 from
Eqn. (Ice_49) as a function of the ice mass fraction w" and pressure. All three
panels have :clhe seawater salinity S, =S;,=35.16504 g kg™'. Panel (a) has units
of K(g kg_l) , panel (b) is in K(Pa)_l, while panel (c) is in (g kgfl)(Pa)_l. The
values contoured in this figure were evaluated from the GSW algorithm
gsw_frazil ratios_adiabatic of the GSW Oceanographic Toolbox (www.TEOS-

10.o0rg).
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Similarly, by eliminating 65, from Eqns. (Ice_45) and (Ice_46) we find

al‘freezing _ rlh
Ih p) dP 00
h— hlh S h -8 w th tfreezing _ Sa freezing
A"'S A Th) 7
A (1 -w ) aSA |p 89freezing aSA ‘p
oP s
00, . A
% - gelizmg| - =2 | (1ce_48)
frazil Sa h _hlh -S /’l\ -S h" a®freezing _ WIh Th atfreezing
A"S, A" g A(l Ih) P 39S ‘
Ay - Alp
and when 90 is eliminated from these same two equations we find
ZI*reezing _ 1—~Ih
~ WIh aP N
hy + ch A
(1 - WIh) P aG)freezing
oP :
ECON - (Ice_49)
S, 6P| oP ' -
A frazil |SA h—J Th -S /ZA -S h" a®freezing _ WIh Th atfreezing
g Alls, TPalle T o ¢ ‘ A m\ Ep 39S ‘
sl et

The variation of Conservative Temperature with pressure under frazil ice
conditions, 80/ 6P‘frazil’ from Eqn. (Ice_48) is plotted in Fig. Ice_14(b) at
S, =8, =35.16504 g kg™'. It is seen that 6O/ 5P‘frazil is quite insensitive to the

Th

frazil ice mass fraction w. This is confirmed in Fig. Ice_15(c) where we show

the difference between 50/ 5P‘frazil and the corresponding derivative of ©

freezing

with pressure at constant Absolute Salinity, 0Oy, ... / 8P|S .
A

The variation of Absolute Salinity with pressure under frazil ice conditions,
oS, / 6P|frazﬂ, from Eqn. (Ice_49) is plotted in Figure Ice_14(c) at
S, =Sy, =35.16504 gkg™ . This figure follows, of course, as simply the ratio of
the figures of panels (a) and (b).
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Figure Ice_15. (a) Plot of §, 50/ 6SA’ﬁazil from Eqn. (Ice_47) as a function of the

. . Ih
ice mass fraction w

of ®

and pressure, for §, =S, =235.16504 g kg™'. This is
simply 35.16504 g kg™ times Figure Ice_14(a).

(b) Contour plot of panel (a) with the values of S, 60 /8S A’ﬁazi evaluated
at ice mass fraction w™ =0 subtracted at each pressure.

(c) The difference between 50/ 5P‘frazil and the corresponding derivative

feezing With pressure at constant Absolute Salinity, 0O ... /8P|S (obtained

from gsw_CT_freezing_first_derivatives). The contoured values of panel (c)

are in

K (Pa)”
S, =Sy, =35.16504 g kg
few percent of those of 50/5P ‘fraZI

and the

seawater salinity was

; shown in Fig. Ice_14(b).

taken
Notice that the numbers contoured here are only a

to be

The dependence of S, 50/8S A’fm“ on the mass fraction of ice is illustrated in
Fig. Ice_15(b) which shows the difference relative to the case when w™ =0.
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When no frazil is present in seawater, its Conservative Temperature is
unaffected by adiabatic and isohaline changes in pressure, but its in situ
temperature changes with pressure according to the adiabatic lapse rate I'
which is usually positive. When frazil is present in seawater, an increase in
pressure results in changes in Conservative Temperature as contoured in
Fig. Ice_14(b). This dependence of the temperature (both Conservative
Temperature and in situ temperature) of the frazil-seawater mixture to changes
in pressure is rather large and negative compared with the (usually positive)
adiabatic lapse rate of seawater which is typically less than one twentieth of the
values shown in Fig. Ice_14(b) for 60/ 5P‘ , and is usually of the opposite sign.
Another way of stating this is that the ad1abat1c lapse rate of the frazil-seawater
mixture is large and negative when frazil is present, compared with the small
and positive adiabatic lapse rate of seawater in the absence of frazil.

Note that the rate at which the freezing Conservative Temperature changes
with Absolute Salinity at fixed pressure, 0©

freczing , is quite different (even
different signs) to the corresponding change mvolvmg frazil ice as the pressure
varies, 0/8S, ’ . A typical value of aeﬂeezmg /BS ‘ is —0.0583 Kg™' kg while
a typical value of 6@/ oS ’ is 23Kg'kg. By confrast, we have seen that the
variation of Conservative Temperature with pressure for frazil ice, 68/ 5P‘

frazil 7

only a few percent different to the corresponding change at constant Absolute
Salinity, 00 ., /8P|SA

All of the material above in these lectures concerning ice, sea ice, and frazil
ice can be found in the paper
McDougall, T. J., P. M. Barker, R. Feistel and B. K. Galton-Fenzi, 2014:
Melting of ice and sea ice into seawater, and frazil ice formation. Journal of
Physical Oceanography, 44, 1751-1775.
The properties of ice and its equilibrium properties with seawater can be
evaluated using the GSW Oceanographic Toolbox, available from www.TEOS-

10.org.

88



Thermodynamics Lectures, MIT, 2015 89

The interaction between ice and seawater in ocean models

In a model, the mixture of seawater and frazil ice must be advected and
diffused, and the frazil crystals must be allowed to migrate vertically (Stokes
drift), but two questions arise.
1 What variables should the model carry to conserve salt and “heat”?
2 How should thermodynamic equilibrium be re-established after the
advection, diffusion and frazil-Stokes-drift part of each time step?

Bulk Absolute Salinity and Bulk potential enthalpy

We have shown that conserving the potential enthalpy of ice Ih is sufficiently
accurate (rather than having to conserve the enthalpy of ice Ih during
melting/freezing and then worry about how the enthalpy of ice Ih varies with
pressure).

This greatly simplifies our task because the First Law of Thermodynamics can
be simplified to be the conservation of the potential enthalpy of the seawater-ice

mixture.

Along with the ice mass fraction, w'", the conserved model variables during
the advection and diffusion part of the time step should then be the “Bulk
Absolute Salinity” S} and the “Bulk potential enthalpy”, 7",

Sf = (1— WIh)SA and n® = (1— wlh)c;)’@ + whp™,

After the advection, diffusion and frazil-Stokes-drift part of the time step, we

have values of Sfl and h]f', for the model box, but these values will not be in
thermodynamic equilibrium with each other.

How do we re-establish thermodynamic equilibrium in the second half of the
time step?

The thermodynamic equilibrium condition between seawater and frazil ice

During the equilibration process, there is no exchange of mass, salt or heat with
neighbouring boxes, so the Bulk Absolute Salinity and the Bulk potential

enthalpy are conserved, so that when thermodynamic equilibrium is reached at
the end of the full time step we must have

1-w")s, =82 and (1-w")%© + w'n" = n},
p

and in addition, the values of all these thermodynamic variables mutually adjust
so that they satisfy the freezing condition at the end of the full time step.

Hence we seek the zero of the function of the ice mass fraction w™

0= f(w") = P = (1= w") 20y e (Sap) = WP AL (5,.p)-

where S, is related to w" by S, = Sf‘l/(l - wlh). Note that f(wlh) is indeed a

function of only the ice mass fraction w .
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To solve f (wlh) =0 we use an improved version of Newton's Method which
converges at the rate 1+ \/5 and is described in McDougall T. J. and S. J. Wotherspoon,
2014: A simple modification of Newton’s method to achieve convergence of order 1+ \/5 . Applied
Mathematics Letters, 29, 20-25. http://dx.doi.org/10.1016/j.am1.2013.10.008 .

The derivative f ’(w[h) is given by

(., Ih)y _ 0 _ #lh _ 0 freezing
f (W ) = cl)Gﬂ_eeng(SA,p) hﬂ_eezmg(SA,p) S, e

9, |,
_ S A w ahlft'leezing
(1 - wlh) aSA |p

An efficient way of determining when there is no frazil ice component

If, at the end of the first part of the time step hll3 is sufficiently “warm”, there
will be no frazil ice. In this case the solution is
h _ _ @B _ 3B/ 0
wih =0, S, =SB and o =n/d.
What is an efficient way of detecting when 7% is “too warm” for frazil ice to

be present? Based on the definition of the equilibrium condition (repeated from
above),

Ih B h) 0 Ih 3 Ih
O = f(W ) = hl - (1_ w )Cp(aﬁeezing(SA’p) -w hfreezing(SA’p)’
we evaluate this function when the ice mass fraction is zero, that is,
Th B 0 B
f(W = O) = hl - cpeﬁeezing(SAl’p)’

and if this is positive then the answer is simply seawater (and no frazil ice), so
that we can set, w™ =0, § N Sfl and © = h]f / cﬁ . The computer time
involved with making this decision is simply the time it takes to evaluate the
freezing Conservative Temperature O . . (S RE p) .

The computer code needed to restore the seawater/ice properties at the end of
the first half of the time step (S LTy, p) to thermodynamic equilibrium is

contained in the computationally efficient code

gsw_frazil properties_potential_poly(SA_bulk, h_pot_bulk, p)

which has outputs of (S 0 0, wlh) .
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Buoyancy frequency N
plz+h) @
h i Figure 11-1 When an incompressible
fluid parcel of density p(z) is vertically
2 2 ® displaced from level z to level z + h

in a stratified environment, a buoyancy
force appears because of the density
difference p(z) — p(z+ h) between the
particle and the ambient fluid.

First consider the incompressible situation as illustrated in the figure. The
figure shows that when a parcel is displaced upwards from its resting position
in a stably stratified fluid, it experiences a downwards buoyant force because it

is denser than the fluid of the environment that surrounds it at its new location.
This force is indicated by the downwards-directed arrow in the figure.

When the fluid is compressible there is a vertical gradient of in situ density
p, given by
|,

0Pl 4"

= pxkP

>, (vertical isentropic density gradient)
even when a fluid layer is completely well mixed so that Absolute Salinity,
entropy and Conservative Temperature are all independent of height. In this
compressible well-mixed case, the fluid parcel illustrated above would decrease
its in situ density in moving upwards by the distance #, but at its new location,
its density would be the same as that of the fluid around it at this height. So in
order to quantify the vertical stability, that is, in order to quantify the vertical
buoyant force that the parcel experiences at its new location, we need to take
into account this vertical gradient of in situ density p due to the fluid’s
isentropic (and isohaline) compressibility « .

The square of the buoyancy frequency (sometimes called the Brunt-Vaisala
frequency), N?, is given in terms of the vertical gradients of density and
pressure, or in terms of the vertical gradients of Conservative Temperature and
Absolute Salinity by (the g on the left-hand side is the gravitational
acceleration, and x, y and z are the spatial Cartesian coordinates)

N = —pp akn = pi(p - 212

o o (3.10.1)
a®® | - p°9s, /o4

X,y

The buoyancy frequency N has units of radians per second, and since a radian
is unitless, N has dimensions of s™'. The buoyancy frequency N is the highest
frequency of internal gravity waves in a density-stratified fluid like the ocean or
atmosphere. The corresponding shortest period of internal gravity waves is
27t/ N which varies from about 20 minutes in the upper ocean to a few hours in
the deep ocean. (This is to be compared with 27z/f >12hours where
f =2Qsing= 1458423 00x10*sing s, is the Coriolis parameter where ¢ is
latitude and €2 is the rotation rate of the earth [in radians per second]).

For two seawater parcels separated by a small distance Az in the vertical,
an equally accurate method of calculating the buoyancy frequency is to bring
both seawater parcels adiabatically and without exchange of matter to the
average pressure and to calculate the difference in density of the two parcels
after this change in pressure. In this way the potential densities, defined with
reference pressure being the mean pressure of the two fluid parcels, are being
compared at the same pressure. This common procedure calculates the
buoyancy frequency N according to
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(€]
2_ 0n _ RO __g&ANp
N*=g(a%0. -5, ) = > (3.10.2a)
or
N*=gp(f°S,, ~ a®0,) = £0. (3.10.2b)

where Ap® is the difference between the potential densities of the two seawater
parcels with the reference pressure being the average of the two original
pressures of the seawater parcels. Eqn. (3.10.2b) has made use of the hydrostatic
relation P, =—gp, and AP is the difference in the pressures of the two parcels,
in Pa.

This difference in potential density, Ap®, between two seawater parcels can
be evaluated more easily when density is expressed in the form p = ;3(S 0 O, p)
than when it is expressed in the form p = p(S Ao b p); witness

Ap®

[)( Sieep’ @deep’ 1—7) _ 13 ( Sihallow, @Shallow’ l_7)
p

(Sieep’ G(Sieep’ [deep’pdeep, ﬁ) , ]_7) _ p(Szhallow , G(Sihallow , [shallow ’pshallow , ﬁ) , ]_7)

Sha“"w) . Compared with the first line of the above equation,

= _ 1 ,,deep
where p = E(p +p
the second line requires more calculations, and the expression is unnecessarily
convoluted.

The “Stability Ratio” R, of a vertical water column is defined as

o°0
R =——= . (3.15.1)
" Bo(sy)

R, is the ratio of the vertical contribution from Conservative Temperature to

z

that from Absolute Salinity to the static stability N? of the water column.

The neutral tangent plane

The “neutral tangent plane” is that plane in physical space in which the local
parcel of seawater can be moved an infinitesimal distance without being subject
to a vertical buoyant restoring force; it is the plane of neutral- or zero- buoyancy.

Take the seawater parcel at the central point and enclose it in an insulating
plastic bag, then move it to a new location a small distance away. Its density
will change by dp = pk6P . At the same location the seawater environment has a
density difference of p = p(K5P+ Boss, - 0595@). If the seawater parcel is
happy to sit still at its new location, it must not be feeling a vertical buoyant
(Archimedean) force, and this requires that its density is equal to that of the
environment at its new location. That is, we must have

pKOP = p(K5P + ﬁ®5SA - ae6®) . (Neutral_1)
Hence, along a neutral trajectory the variations of §, and © of the ocean obey
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Boss N a®50 . (Neutral_2)

Incidentally, this thought experiment involving the adiabatic and isohaline
displacement of fluid parcels is typical of our thinking about turbulent fluxes.
We imagine the adiabatic and isohaline movement of fluid parcels, and then we
let these parcels mix molecularly with their surroundings. Central to this way of
thinking about turbulent fluxes are the following two desirable properties of the
tracer that is being mixed.

(1) it must be a “potential” property, for otherwise its value will change
during the adiabatic and isohaline displacement so it is difficult to define a flux
of the quantity, and

(2) it should preferably be a “conservative” fluid property so that when it
does mix intimately (that is, molecularly) with its surrounding, we can be sure
that no funny business is going on; no magic, undesirable production or
destruction of the property.

Expressing this definition of a neutral tangent plane °5S, = ®80 in terms
of the two-dimensional gradient of properties in the neutral tangent plane, we
have that

—p_IVnp +KkV P = —p_l(Vnp—VnP/cz) = aOVn(a—B@VnSA =0, (311.2)

where, by way of reminder the relevant thermal expansion coefficient a® and
saline contraction coefficient B° are defined by

1 dp

a® = _Lp and pB°=—
p oS,

2.18.3), (2.19.3
590 ( ) ( )

SpsP O,p

Here V, is an example of a projected non-orthogonal gradient

_ ot . or
V’,T = Erl +W

j + 0k, (3.11.3)

that is widely used in oceanic and atmospheric theory and modelling.
Horizontal distances are measured between the vertical planes of constant
latitude x and longitude y while the values of the property 7 are evaluated on
the r surface (e. g. an isopycnal surface, or in the case of V , a neutral tangent
plane). Note that V 7 has no vertical component; it is not directed along the
surface, but rather it points in exactly the horizontal direction.
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A very accurate finite amplitude version of achieving $°5S, = ¢®30 is to
equate the potential densities of the two fluid parcels, each referenced to the
average pressure p = 0.5( P+ pb). In this way, when two parcels, parcels a and
b, are on a neutral tangent plane then [)(Si,@a,ﬁ) = [)(S}i,@b,ﬁ); see the figure
below which involves the thought process of moving both parcels to pressure p .

> *
\L&,&)‘«U""—’“—)—/ ——

n 't{;

At e F)- (S p)

The (three dimensional) normal vector to the neutral tangent plane n is

given by
IN?n = —p'WVWp+kVP = —p ! (Vp-VP/ 2
£ pvp P ( P ) (3.11.1)
(€] (€]
= o VO-B°VS,.

As defined, n is not quite a unit normal vector, rather its vertical component is
exactly k, that is, its vertical component is unity (k-n=1).
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