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Lectures on the Thermodynamics of Seawater and Ice,

given at MIT, 2015, by Trevor J. McDougall

(of the School of Mathematics and Statistics,
University of New South Wales, Sydney, Australia)

Motivation for the first several lectures

As heat is exchanged between the atmosphere and the ocean, how can we keep
track of “heat” in the ocean? Here is a plot of the isobaric specific heat capacity
of seawater.

Figure 4. Contours of isobaric specific heat capacity ¢, of
seawater (inJ kg™ K™'), at p =0.

Here is a zoomed-in plot of the isobaric specific heat capacity of seawater.
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Fig. 1.7 Specific heat of seawater c,,
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For the purpose of this introductory lecture, just think of potential temperature
0 as simply temperature.

A given air-sea heat flux will affect the potential temperature 6 in the ocean at a
rate that depends on where you are on this §, -6 diagram. That is, the change

in temperature at the sea surface due to a Joule of heat being transferred from
the atmosphere into a kilogram of seawater, at constant salinity, is equal to the
reciprocal of c, (SA,Q,O) .

So what variable represents the “heat content per unit mass” of seawater? It
clearly is not simply potential temperature 6 . Nor is it the product 6¢, (S A,O,O)
(for at least two reasons, (1) because Qcp(SA,G,O) # Jcp(SA,G,O) df and (2)
because the “heat content” of seawater also depends separately on salinity
(dhy = dh(S,,6,0) = c,(S,.6.0)d6 + hy (S,.6,0)dS,, with the enthalpy 4 being
a credible candidate for “heat content” at this stage).

And even if we were able to answer this question of “what is the “heat content”
per unit mass” of seawater at p =0, what do we do in the sub-surface ocean
where changes in pressure and specific volume v cause changes in the internal
energy u and enthalpy / of —Pdv and vdP respectively?

In short, we are asking the question

“what is “heat” in the ocean?”.

that is, more specifically, we are asking what is the “heat content per unit mass” of
seawater, applicable throughout the ocean at all depths. We seek a “heat content
per unit mass” variable whose transport and turbulent mixing can be used to
track the transport and the turbulent mixing of the heat that enters the ocean
across the air-sea boundary and across the sea floor (the geothermal heat flux).
This paragraph neatly summarizes the purpose of the first several lectures of
this course.
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The route to answering our question, “what is “hear” in the ocean?”

In order to answer this question we need to have a thorough understanding of
the First Law of Thermodynamics which in turn, can only be derived from the
Conservation Equation for Total Energy, which in turn relies on the
Fundamental Thermodynamic Relation, which in turn embodies the definition
of entropy and the Second Law of Thermodynamics. In the coming lectures we
will derive each of these three equations, but for now, here they are.

The Continuity Equation is

p,+V-(pu)=01. (A21.2)

The Fundamental Thermodynamic Relation is

du+(p+B))dv = dh—vdP = (T,+¢)dn+ uds, |. (A7.1)

The Conservation Equation for Total Energy is

(pZ) +V-(puZ) = pdZ/dt = -V-([ p+F, |u)-V-F* -V F®

‘ (B.15)
+V~(pv“S°V%|:u-u]) .
where the total energy Z per unit mass is defined as the sum of
the internal, kinetic and gravitational potential energies, that is,
F=u+luu+d. (B.14)

The First Law of Thermodynamics is

dh  dP du dv dn ds,
——v—| = —+|p+Eh)— | = T+t)—+u—=
p[dr dej p(dr (r O)dtJ p[(o Va “dtj . (B.19)

= —V-F*-V-F%+ pe

Nomenclature

h is specific enthalpy and u is specific internal energy, related by
h=u+Pyv = u+( p+P(’))v (“specific” means “per unit mass of

seawater”)

v is the specific volume

7N is specific entropy

U is the relative chemical potential of seawater
S

A
FR is the radiative flux of heat

is the Absolute Salinity of seawater

F? is the molecular flux of heat

€ is the rate of dissipation of kinetic energy

Equations numbers are from the TEOS-10 Manual,

IO0C, SCOR and IAPSO, 2010: The international thermodynamic equation of
seawater — 2010: Calculation and wuse of thermodynamic properties.

Intergovernmental Oceanographic Commission, Manuals and Guides
No. 56, UNESCO (English), 196 pp. Available from www.TEOS-10.org

Many of the topics that we cover are discussed in more detail in this TEOS-10
Manual. You should download it to your computer; it is over 200 pages.

A comprehensive list of nomenclature (Nomenclature_ MATH5185_2014.pdf) is
being distributed to the class.
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The continuity equation
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Fig. 1.1 Mass conservation in a cubic Eulerian control volume.

Thus, the accumulation of fluid within the control volume, due to motion in the x-
direction only, is

3(pu)

8yéz[(pu)y — (ptt)x+5x] = 8x8yéz. (1.25)

To this must be added the effects of motion in the y- and z-directions, namely

d(pv) | d(pw)
—[ T > ]8 88z

(1.26)

This net accumulation of fluid must be accompanied by a corresponding increase of
fluid mass within the control volume. This is

;—r (Density x Volume) = 5.\'8}‘6:3—[), (1.27)

ot
because the volume is constant. Thus, because mass is conserved, (1.25), (1.26) and
(1.27) give
p  d(pu) 9d(pv)  d(pw)
Sx8ydz = 0.
*oy [az ax oy | &

Because the control volume is arbitrary the quantity in square brackets must be zero
zero and we have the mass continuity equation:

(1.28)

g_erv.(p.,):o. (1.29)

For a finite, arbitrary volume that is fixed in space ...

Fluid Joss = J- pv-ds
5

4 =J v (pv)dv
17
Figure 1.2 Mass con- ) '
servation in an arbitrary e A3
Eulerian control volume i \ Surface efement
V' bounded by a sur- r

face S. The mass gain, points outward

[ (@p/dt)dV is equal to ]
the mass flowing into the y I ‘)P dav
volume, — [¢(pv) - dS = v

— [, V- (pv)dV.

Mass increase

and if the arbitrary volume moves and changes shape, the continuity equation
becomes

ijpdv = [pv-ds = [V-(pv)ar
ar) ! )
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The material derivative

The material derivative i—‘f is the derivative following the flow.

Let us suppose that a fluid is characterized by a (given) velocity field v (x, ¢), which
determines its velocity throughout. Let us also suppose that it has another property ¢,
and let us seek an expression for the rate of change of ¢ of a fluid element. Since ¢ is
changing in time and in space we use the chain rule:

_ ¢y, b5 0bs s 0P .
8 = 580+ 5 8% + 5 8y + 3282 = SR8 + 6 Vg, (1.4)

This is true in general for any ¢, 8x, etc. Thus the total time derivative is

dp _ 09  dr.

Vo. 1.5
dr ot dt ¢ (1.5

If this is to be a material derivative we must identify the time derivative in the second
term on the right-hand side with the rate of change of position of a fluid element, namely
its velocity. Hence, the material derivative of the property ¢ is

d _ 99

-Vo. .
dt 81+v ¢ (1.6)
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A brief introduction to Absolute Salinity and Practical Salinity

Practical Salinity S, has been measured and reported by oceanographers for 37
years (since it was defined in 1978). Practical Salinity is found from knowledge

of a seawater sample’s in situ temperature, pressure and electrical conductivity.

In the past ten years it has become acknowledged that the composition of
seawater is not constant throughout the world ocean, and that the spatially
variable ratio of the constituents leads to horizontal gradients of density that are
too large to ignore (leading to ~8% change in the meridional [northward] vertical
overturning circulation of the North Atlantic).

This issue is an active area of research, but will not be a central part of this
course. We will deal with only one salinity variable, namely Absolute Salinity
S, , as defined by TEOS-10.

For completeness, we will make a few remarks comparing four salinity
variables
Practical Salinity, S,
Reference Salinity, Sy
Absolute Salinity, S,
Preformed Salinity, S.

“Standard Seawater” has (reasonably well) known composition, but the
Practical Salinity S}, of Standard Seawater is not quite equal to the mass fraction
of dissolved material in seawater. Rather, this mass fraction for Standard
Seawater is estimated to be the Reference Salinity, S} , of TEOS-10,

16504 gkg™
= {—35 6504 gke JSP = Uy S, - 2.4.1)

K 35

“Standard Seawater” is based on surface water from the North Atlantic, and
it contains no nutrients. Deeper in the ocean, and particularly in the deep
Southern Ocean and the deep North Pacific, the concentration of nutrients is
high (as a result of biogeochemical processes). Nutrients do not conduct
electricity very well (particularly silicic acid which is almost non-conductive)
and so an estimate of salinity based on a sample’s electrical conductivity
underestimates the mass fraction of dissolved material and so underestimates
the density of seawater.

Given sufficient measurements of nutrients, we can now allow for their
presence on the mass fraction (and on the density) of seawater according to

(SA _SR)/(gkgil) =

. (A4.10)
(55.6 ATA +4.7 ADIC +38.9NO; +50.7 Si(OH), ) / (molkg™)

(TA is Total Alkalinity, DIC is Dissolved Inorganic Carbon, NO;J is nitrate and
Si(OH), is silicate, or silicic acid).

We normally do not have these measurements, so TEOS-10 also provides an
algorithm to evaluate Absolute Salinity from a spatial look-up table of the
Absolute Salinity Anomaly Ratio, R® ,

S, = SR[l + R? (long, lat, p)] . (A.5.10)

The subroutine gsw_SA_from_SP converts from Practical Salinity S, to
Absolute Salinity S, .

The Absolute Salinity S, is the correct salinity argument to be used to
evaluate density and other thermodynamic properties.
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The Absolute Salinity Anomaly, 65, =S, —S;, is the improvement in
today’s salinity estimates compared to those of the Practical Salinity era (1978 -
2009). This improvement is shown in the following two figures.

8S, (g kg™") at p=2000 dbar
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Figure 2 (a). Absolute Salinity Anomaly ¢S, at p =2000 dbar.
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Figure 2 (b). A vertical section of Absolute Salinity Anomaly 65, along 180°E
in the Pacific Ocean.
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The horizontal gradients of density are responsible for driving the world’s deep
ocean currents (via the so-called “thermal wind” equation). The neglect of the
spatial variation of seawater composition (that is, the use of S} instead of S, in
the evaluation of density) leads to non-trivial errors in the horizontal density
gradient. Globally, half the ocean below 1000 dbar is affected by more than 2%
(see Fig. A.5.1) while in the North Pacific, half the ocean below 1000 dbar is
affected by more than 10%.

9

x 10

1p,(S,) -5, (S

Figure A.5.1. The northward density gradient at constant pressure (the
horizontal axis) for data in the global ocean atlas of Gouretski and Koltermann
(2004) for p >1000dbar. The vertical axis is the magnitude of the difference
between evaluating the density gradient using S, versus Sy as the salinity
argument in the TEOS-10 expression for density.
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We now introduce Preformed Salinity S.,. Preformed Salinity S. is

designed to be as close as possible to being a conservative variable. That is, S. is
designed to be insensitive to the biogeochemical processes that affect the other
types of salinity to varying degrees. S. is formed by first estimating the
contribution of biogeochemical processes to S,, and then subtracting this
contribution from §,. Because it is designed to be a conservative oceanographic
variable, S, is the ideal salinity variable for ocean modeling.

As a practical thing, the difference S —S, is taken to be 0.35(5 A —SR) .

108, oS,

| >
S

A

| r=03s | 10
S, S

R

Figure A.4.1. Number line of salinity, illustrating the differences between
Preformed Salinity S., Reference Salinity S, and Absolute Salinity §, for
seawater whose composition differs from that of Standard Seawater.

For seawater of Standard Composition, S, = S; = §, = (35.165 04 gkg_1/35)SP,
but when the seawater sample has undergone some biogeochemical activity, its
nutrient levels will be greater than zero, its conductivity will be increased a little
and its Absolute Salinity will be increased more. Specifically, if the increase in
Absolute Salinity due to the change in chemical composition, S, —S,, is say 1.35
on some scale, then only 0.35/1.35 (~26%) of this increase will be reflected in the
sample’s electrical conductivity and hence in its Practical Salinity and Reference
Salinity.

In this course we will deal exclusively with Absolute Salinity, and we will
also simplify things and consider Absolute Salinity to be a Conservative
variable. That is, we will assume that

ds
(pSA),+V'(P“SA) = pd—tA =-V.-F® |, approximate (A.21.8a)

where F° is the molecular flux of salt. It is actually the Preformed Salinity S,
that obeys such a conservative evolution equation, namely

(pS:),+V-(puS.) = p(ft* =-V.-F. (A21.1)

By making the assumption that Absolute Salinity obeys the conservative
equation (A.21.8a) rather than the real form of this equation, namely

(pS,) +V-(pus,) = pdﬁ =-V.-F +pSh (A.21.8)
' dr

. . S . . .
we are ignoring $°*, the non-conservative source term. This non-conservative
source term is due to biogeochemical processes, for example, the remineralization
of biological material; the turning of particulate matter into dissolved seasalt.

For numerical integrations of an ocean model that exceed about a century, this
neglect will be significant, leading to errors in the “thermal wind” 1.35 times as
large as those described above. For shorter numerical integrations, the errors
will be small. For small time, the important thing is that the expression for
density is being called with Absolute Salinity as the salinity argument, not
Reference or Practical Salinity. Over the first few decades of integration the
errors will be small, and then they will build to be 1.35 times those in Fig. A.5.1
above.
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Who was J. W. Gibbs?

10

10
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Josiah Willard Gibbs (February 11, 1839 — April 28, 1903) was
an American scientist who made important theoretical
contributions to physics, chemistry, and mathematics. His work
on the applications of thermodynamics was instrumental in
transforming physical chemistry into a rigorous deductive
science. Together with James Clerk Maxwell and Ludwig
Boltzmann, he created statistical mechanics (a term that he
coined), explaining the laws of thermodynamics as
consequences of the statistical properties of large ensembles of
particles. Gibbs also worked on the application of Maxwell's
equations to problems in physical optics. As a mathematician, he
invented modern vector calculus (independently of the British
scientist Oliver Heaviside, who carried out similar work during the
same period).

In 1863, Yale awarded Gibbs the first American doctorate in
engineering. After a three-year sojourn in Europe, Gibbs spent
the rest of his career at Yale, where he was professor of
mathematical physics from 1871 until his death. Working in
relative isolation, he became the earliest theoretical scientist in
the United States to earn an international reputation and was
praised by Albert Einstein as "the greatest mind in American
history".

In 1897 he was elected a Member of the National
Academy of Sciences in the USA, and as a foreign member of
the Royal Society of London, and in 1901 Gibbs received what
was then considered the highest honor awarded by the
international scientific community, the Copley Medal of the Royal
Society of London, "for his contributions to mathematical
physics". But Gibbs was so retiring he had the US naval attaché
in London collect the medal on his behalf.

Commentators and biographers have remarked on the
contrast between Gibbs's quiet, solitary life in turn of the century
New England and the great international impact of his ideas.
Though his work was almost entirely theoretical, the practical
value of Gibbs's contributions became evident with the
development of industrial chemistry during the first half of the
20th century. According to Robert A. Millikan, in pure science
Gibbs "did for statistical mechanics and for thermodynamics what
Laplace did for celestial mechanics and Maxwell did for
electrodynamics, namely, made his field a well-nigh finished
theoretical structure."

Maxwell was an admirer and collaborator of Gibbs, and
Maxwell's early death in 1879, at the age of 48, precluded further
collaboration between him and Gibbs. The joke later circulated
in New Haven that "only one man lived who could understand
Gibbs's papers. That was Maxwell, and now he is dead."

When Dutch physicist J. D. van der Waals received the 1910
Nobel Prize "for his work on the equation of state for gases and
liquids" he acknowledged the great influence of Gibbs's work on
that subject. Max Planck received the 1918 Nobel Prize for his
work on quantum mechanics, particularly his 1900 paper on
Planck's law for quantized black-body radiation. That work was
based largely on the thermodynamics of Kirchhoff, Boltzmann,

11
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and Gibbs. Planck declared that Gibbs's name "not only in
America but in the whole world will ever be reckoned among the
most renowned theoretical physicists of all times."

The “Gibbs Phenomenon” is another well-known example of
his influence; this being the sine integral showing the overshoot
and ringing of a Fourier Series approximation to a step function.
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Basic Thermodynamic Concepts: internal energy, enthalpy and Pd}V work
Consider a fluid in a piston arrangement shown below. The fluid receives an

amount of heat 0 and mechanical work is done on the fluid at the rate W . The
internal energy of the fluid U, changes by the amount AU =Q + W .

Figure 1.7. The total change in the energy of
a system is the sum of the heat added to it and
the work done on it. Q%

Internal energy u represents (1) the kinetic energy involved in the vibration
of molecules plus (2) the potential energy of chemical bonds and electrostatic
charges. For liquids, and especially for water, this second aspect to internal
energy is extremely important, while for a perfect gas, only the first part counts.
Understanding thermodynamics from the scale of molecular behaviour is the field
called “statistical thermodynamics” and we will not touch on this in this course.

The most common type of work W done on or by a fluid is the work done
by compression or expansion, as in the following figure. This is how a car
internal combustion engine extracts useful work from the high pressure gas that
results from igniting the fuel-air mixture in an engine cylinder.

]

Figure 1.8. When the pis-
ton moves inward, the vol-

Piston area = A

ume of the gas changes by
AV (anegative amount) and
the work done on the gas

~.i-a— Force = F

(assuming quasistatic com-
pression) is —PAWV.

fa—i
Ax

For infinitesimal changes we can write dU + PdV = 6Q. Defining
enthalpy H as H=U + PV our attempt at writing down “energy conservation”
so far can be written as

dH -VdP = 60. (~B.1a)
To motivate enthalpy H consider how much energy is required to magically
create a blob of fluid out of nothing, and place it at its present location at
pressure P.

Figure 1.15. To create a rabbit out of nothing and place it on the table, the
magician must summon up not only the energy U7 of the rabbit, but also some
additional energy, equal to PV, to push the atmosphere out of the way to make
room. The total energy required is the enthalpy, /f = U + PV.

13



Thermodynamics Lectures, MIT, 2015 14

Entropy and the Second Law of Thermodynamics

A “closed system”, such as the piston illustration on the previous page, is one
where there is exchange of heat with the environment, and there is mechanical
work done between the system and the environment, but there is no exchange of
mass of any species. That is, for seawater, a “closed system” is a seawater parcel
with fixed mass of both water and of salt, and having no exchange of water or
salt with the surrounding fluid.

We begin by repeating our progress so far with the conservation of energy for a
“closed system”, but now written in terms of “specific” variables, that is
variables that represent the amount of stuff per unit mass of seawater,

dh —vdP = 8q . (~B.1b)

For a “closed system” the Second Law of Thermodynamics states that
1. there is a state variable entropy 1 = n(S ol ,P) whose infinitesimal

changes obey
dn = T for a closed system (2nd_Law)
2. and that irreversible processes (like diffusion and turbulent mixing)
always result in the production entropy.

Entropy represents the amount of “disorder” in a system, and things naturally
become more disordered in nature.

Note that dq itself is a complicated animal (which I passionately dislike). It is not
the divergence of a flux; for example the dissipation of turbulent kinetic energy,
g, is part of 8g. I emphasise that this dissipation € heats the fluid but it is not
the divergence of a heat flux. This nasty nature of dq is why it is written as g
rather than dg. g is not a total differential and ¢ is not a state variable, that is

q # q(SA,T,P).

We can combine Eqns. (~B.1b) and (2"_Law) to find
dh —vdP = Tdn for a closed system (Fundamental_Closed)

This is the Fundamental Thermodynamic Relation for a closed system; it applies
when there are no variations of Absolute Salinity (e.g. it applies to a lake). Itis a
differential relationship between three state variables, specific enthalpy, specific
volume and specific entropy.

The Fundamental Thermodynamic Relation (or Gibbs relation)

Now we will generalize this relationship to an “open system” where the system
exchanges not only heat and work energy with its environment, but it also
exchanges mass. That is, a seawater parcel that is an “open system” exchanges
not only “heat” and “work”, both also water and salt with its environment.

Consider a situation where we have a seawater parcel exchanging water
and salt with its environment at constant temperature and pressure. It is
simplest to assume that there is no change in the parcel’s total mass.
Specifically, envisage two seawater parcels that are in contact with each other,
having different Absolute Salinities but the same temperature and pressure. A
small part of each parcel is now exchanged with the other parcel, with the
amount exchanged in both directions having the same mass.

We now define the “system” as being one of these two seawater parcels. If
the system were closed we would have the relation d# —vdP = Tdn but now
the change in the seawater sample’s enthalpy and entropy must incorporate the

14
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change in the Absolute Salinity dS, . By Taylor series expansion of h(S ol ,P)
and n(S T ,P), the changes in enthalpy and entropy are related to those of the
corresponding closed system by

di = dpeosed 4 O ds, , (dh)
Alr, p
Close a
dnzdnld+£ ds, . (dn)
Alr, p

We know that dr®*! —vdP = Tdn®**® and these three equations can be
combined to find

oh on
dh —vdP = Tdn + | — - T—4
Y g ( 3s

T,P A

aS

A

ds, . (dh - Tdn)
T.P

This is the Fundamental Thermodynamic Relation. We can write it in more
familiar nomenclature once we have defined the Gibbs function (also called
“free enthalpy” and sometimes “free energy”) by

g(S,.T.P)=g=h-Tn =u+Pv—Tn|. (definition_of g)

We also use the symbol u for the relative chemical potential of seawater defined as
the partial derivative of the Gibbs function with respect to Absolute Salinity,

u= E)aTg (or u= gs, ). (rel chem pot)

Alr,p

This gives the usual form of the Fundamental Thermodynamic Relation (FTR)

du+(p+B)dv = dh—vdP = (T,+¢)dn+ uds, |. (FTR)

Here we have written the Absolute Pressure P as p + F, where F, = 101325 Pa
is the pressure of one standard atmosphere and p is the “sea pressure”, and we
have written the Absolute Temperature T = T, +¢ as the sum of the Celsius
zero point T, = 273.15 K and the temperature ¢ in degrees Celsius.

In Tutorial class you will be asked to prove that (using g = g(S o ,P) )

_an

; _a_TSA :-(T0+t)gTT . (n,vand c,)

,P

n=-g, v=g, and ¢

The Gibbs function is a thermodynamic potential, from which all thermodynamic
properties can be found by simple operations such as differentiation.

The alternative name of “free enthalpy” comes from considering again the
amount of energy required to create our seawater parcel out of nothing. The
total amount of energy required per unit mass is 4 but some of this energy,
namely 77, can be extracted from the environment if the parcel is created
slowly enough so it is always at the temperature 7 of the environment.

Figure 5.1. To create a rabbit out of nothing and place it on the table. the
magician nced not summon up the entire enthalpy, H = U/ 4+ PV. Some energy,
equal to 7S, can flow in spontaneously as heat; the magician must provide only
the difference, G = H — T'S, as work.
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Review of the last lecture

We learnt that the Practical Salinity variable, defined in 1980, is essentially a
measure of the electrical conductivity seawater, but is blind to spatial variations
of the concentrations of nutrients which affect the density and the electrical
conductivity of a seawater sample differently to how the major dissolved ions
affect density and conductivity.

This has now been addressed, and beginning in 2010 oceanographers have a
new variable, Absolute Salinity, S,, which better represents thermodynamic
quantities such as density. This recent definition of seawater salinity and the
Gibbs function of seawater goes by the name of the

International Thermodynamic Equation Of Seawater — 2010,
or TEOS-10, see www.TEOS-10.org.

We derived the Gibbs Relation, or Fundamental Thermodynamic Relation

du+(p+B)dv = dh—vdP = (T,+t)dn+ uds, |. (FTR)

which is a relationship between the total differentials of several state variables,
u,v,h,n and pu.

We defined the Gibbs function in terms of enthalpy and entropy by

g(S,.T.P)=g=h-Tn =u+Pv—Tn|. (definition_of g)

All the thermodynamic properties of a fluid can be derived from this one
“parent” function, g(SA,t, p), by simple mathematical operations such as
differentiation. Hence the fundamental importance of the Gibbs function for a
substance.

As for understanding the difference between enthalpy #, internal energy u
and the Gibbs function g we learnt that enthalpy is a better estimate of the total
amount of thermodynamic energy in a fluid parcel, recognizing that the parcel’s
creation involved pushing its environment out of the way (because it occupies
volume v (per unit mass) at ambient Absolute Pressure P). Enthalpy # is
useful for understanding processes that occur at constant pressure, while
internal energy u is useful for understanding processes that occur at constant
volume.

The Gibbs function g =h—1Tn is the part of enthalpy # that is “free” or
“available”. The part Tn of & is not available “for sale” on the energy market,
because it is not “available” to do any useful work. Hence the Gibbs function is
sometimes called “free enthalpy” or “free energy”. The adjective “available”
makes sense if you are selling the energy of the seawater parcel to someone who
wants to use the energy of the parcel to do some useful work in say an energy
cycle machine. The adjective “free” makes sense if you consider yourself to be
the magician, creating the seawater parcel out of nothing, and getting a free ride
from the environment to the extent 77.

Warning on Nomenclature. For the state variables such as u, v, h,n we

use lower case letters when they are per unit mass (“specific” variables), and
upper case when they represent the total amount of that quantity in a mass of
fluid of mass M . But the use of upper case P and T is different. These upper
case letters stand for Absolute Pressure (in Pa =Nm™>) and Absolute
Temperature (K ), while the lower case letters p and ¢ are for p = P— F, (often
in units of dbar)and ¢ =7 — 7} (in degrees Celsius).

P = 101 325 Pa (=10.1325 dbar), and

0
T,=273.15K.

0

16
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A rough derivation of the First Law of Thermodynamics for a pure substance

For a pure fluid in which there is no dissolved material (such as pure water with
zero Absolute Salinity) the derivation of the First Law of Thermodynamics
usually starts with our Eqn. (~B.1b), namely di — vdP = &g, written in terms of
material derivatives as (where d¢g is now “per unit volume” rather than “per
unit mass”)

dh dP 0q
p[ v ' ) =% for pure water (B.1)
Now we have to guess what the nasty, obnoxious, odious, 5(1/ d¢ term might be.
We know that there is such a thing as the molecular flux of heat F¢=— pckaVT
(where k" is the molecular diffusivity of temperature) whose (negative)
divergence one might imagine should be part of §g/dt. We know there is such
a thing as the radiative heat flux F* whose (negative) divergence should also be
part of 8q/dt. We also know that when the kinetic energy of turbulent motions
is dissipated by the molecular viscosity, energy changes from its kinetic form to
its “heat” form”, and the fluid warms up as a result. So we do the sensible thing
and add this term to 8¢/dt. This term is written as pe where ¢ is the rate of
dissipation of kinetic energy per unit mass of fluid. After this educated
guesswork we have the First Law of Thermodynamics for a pure substance,

p[% - v%j = % = —-V.FR —-V.F? + pe. for pure water (B.2)

So far so good; this educated guesswork has allowed us to arrive at a correct
result in this simple case for a fluid that is a pure substance.

But we have actually assumed that the molecular flux of heat appears on the
right-hand side as V~( pcka VT) . We have no right to assume that. We cannot
rule out the form pckaV'VT for example, for this term. So, what will turn out
to be the key feature of Eqn. (B.2), namely that apart from pe the other terms on
the right-hand side appear as flux divergences, we have actually assumed, not
proven. This is not satisfactory and we must do better.

A false start at deriving the First Law of Thermodynamics for seawater

But lets stay with this rough, hand-waving approach for a little bit longer, and
see how we can get with deriving the First Law of Thermodynamics for
seawater when there are spatial variations of Absolute Salinity. The same
traditional discussion of the First Law of Thermodynamics involving the
“heating” and the application of compression work (as in Eqn. (~B.1a) above),
and now the change of salinity to a fluid parcel shows that the change of

enthalpy of the fluid parcel is given by (u — I:T0 +t] U, being hSA‘T P)

dH - VAP = 60 + (u — [Ty +t]py )M dS,, (B.3)

where M is the mass of the fluid parcel. When written in terms of the specific
enthalpy 4, and O0Q per unit volume (dq), this equation becomes (using
pdS, /dt = -V -F%)
dn dp oq S
——v— | == —(u—|T,+t V-F. B.4
p(dl vdtj dt (N [0 JMT) (B.4)
Does this help with the task of constructing an expression for the right-hand side
of (B.4) in terms of the dissipation of mechanical energy and the molecular,
radiative and boundary fluxes of “heat” and salt? If the “heating” term Jdq/d¢ in
Eqn. (B.4) were the same as in the pure water case, Eqn. (B.2), then we would
have successfully derived the First Law of Thermodynamics in a saline ocean via
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this route. However, we will now show that d¢/d¢ in Eqn. (B.4) is not the same
as that in the pure water case, Eqn. (B.2).

Substituting the expression for dg/d¢ from (B.2) into the right-hand side of
(B.4) we find that the right-hand side is not the same as the First Law of
Thermodynamics (B.19) which we derive below (this comparison involves using
the correct expression (B.27)) for the molecular flux FQ). The two versions of
the First Law of Thermodynamics are different by

B ug

FS-V(u— [T+t u, ) + V.[WTOAHJFS}. (B.5)
Note that the fact that the right-hand side of Eqn. (B.4) is not the divergence of a
flux was already apparent in that equation; this is a damning shortcoming. This
inconsistency means that the rather poorly defined “rate of heating” d¢/dt must
be different in the saline case than in the pure water situation by this amount.
We know of no way of justifying this difference, so we conclude that any
attempt to derive the First Law of Thermodynamics via this route involving the
loosely defined “rate of heating” dq/dt is doomed to failure. This is not to say
that Eqn. (B.4) is incorrect. Rather, the point is that it is not useful, since 8g/d¢
cannot be deduced directly by physical reasoning.

In particular, the expression in (B.5) is not the divergence of a flux and so
when two parcels are mixed at constant pressure, enthalpy will not be
conserved (see later). We were able to correctly guess the form of the right-hand
side of the First Law of Thermodynamics in the case of pure substance, but in
the presence of salinity gradients, our intuition fails us. Let’s stop this guessing
game and derive the First Law of Thermodynamics properly.
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The proper derivation of the First Law of Thermodynamics for seawater

Since there is no way of deriving the First Law of Thermodynamics that
involves the “heating” term Jq/dt, we follow Landau and Lifshitz (1959) and de
Groot and Mazur (1984) and derive the First Law via the following circuitous
route. Rather than attempting to guess the form of the molecular forcing terms
in this equation directly, we first construct a conservation equation for the total
energy, being the sum of the kinetic, gravitational potential and internal
energies. It is in this equation that we insert the molecular fluxes of heat and
momentum and the radiative and boundary fluxes of heat. We know that the
evolution equation for total energy must have the conservative form, and so we
insist that the forcing terms in this equation appear as the divergence of fluxes.

Having formed the conservation equation for total energy, the known
evolution equations for two of the types of energy, namely the kinetic and
gravitational potential energies, are subtracted, leaving a prognostic equation for
either internal energy or enthalpy, that is, the First Law of Thermodynamics.

We start by developing the evolution equations for gravitational potential
energy and for kinetic energy (via the momentum equation). The sum of these
two evolution equations is noted. We then step back a little and consider the
simplified situation where there are no molecular fluxes of heat and salt and no
effects of viscosity and no radiative or boundary heat fluxes. In this “adiabatic”
limit we are able to develop the conservation equation for total energy, being the
sum of internal energy, kinetic energy and gravitational potential energy. To
this equation we introduce the molecular, radiative and boundary flux
divergences. Finally the First Law of Thermodynamics is found by subtracting
from this total energy equation the conservation statement for the sum of the
kinetic and gravitational potential energies.

We start by writing the Fundamental Thermodynamic Relation (FTR) in
terms of material derivatives following the instantaneous motion of a fluid

parcel d /df = a/at|x s +u-V,

d d dh 1dP
> ( 0)_v_ =(

—+(p+PF =
PPl T a

. (B.6)

Gravitational potential energy

If the gravitational acceleration g is taken to be constant the gravitational
potential energy per unit mass with respect to the height z = 0 is simply gz.
Allowing g to be a function of height means that the gravitational potential
energy per unit mass ® with respect to some fixed height z, is defined by

= j g(Z) dz'. (B.7)
20
At a fixed location in space @ is independent of time while its spatial gradient is
given by V@ =gk where k is the unit vector pointing upwards in the vertical
direction. The evolution equation for ® is then readily constructed as
do
(p®),+ V- (pPu) = Py = PV (B.8)
where w is the vertical component of the three-dimensional velocity, that is
w=u-k. (Clearly in this section g is the gravitational acceleration, not the
Gibbs function). Note that this local balance equation for gravitational potential
energy is not in the form

(pC),+V-(puC) = pi—f = -V-F (A.8.1)

that is required of a conservative variable, since the right-hand side of (B.8) is
not minus the divergence of a flux.
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Momentum evolution equation

The momentum evolution equation is derived in many textbooks including
Landau and Lifshitz (1959), Batchelor (1970), Gill (1982) and Griffies (2004). The
molecular viscosity appears in the exact momentum evolution equation in the
rather complicated expressions appearing in equations (3.3.11) and (3.3.12) of
Batchelor (1970). We ignore the term that depends on the product of the
kinematic viscosity v'*° and the velocity divergence V-u (following Gill

(1982)), so arriving at

p(cil—l; + fkxpu = —VP—pgk+V.(pvviSCV71), (B.9)

visc

where f is the Coriolis frequency, v"*° is the kinematic viscosity and Vu is

—_—

twice the symmetrized velocity shear, Vu= (aui / 0x + du, / axl.). The centripetal
acceleration associated with the coordinate system being on a rotating planet can
be taken into account by an addition to the gravitational acceleration in (B.9)
(Griffies (2004)).

Kinetic energy evolution equation

The kinetic energy evolution equation is found by taking the scalar product of
Eqn. (B.9) with u giving

(p%u-u)t +V-(pullu-u])
= pd(%u-u)/dt = -u-VP —pgw+V-(vaiSCV%[u-u])—pE,

where the dissipation of mechanical energy ¢ is the positive definite quantity

(B.10)

£ = %v“sc(ﬂ-ﬂ). (B.11)

Evolution equation for the sum of kinetic and gravitational potential
energies
The evolution equation for total mechanical energy lu-u +® is found by
adding Eqns. (B8) and (B10) giving
(p[%wu + (I)]) + V-(pu[%u-u + (I)])
‘ ' (B.12)
= pd(%wu + CI))/dt =-u-VP + V~(va'S°V%[u~u:|) — pE.

Notice that the term pgw which has the role of exchanging energy between the

kinetic and gravitational potential forms has cancelled when these two evolution
equations were added.
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Conservation equation for total energy E in the absence of molecular
fluxes

In the absence of molecular or other irreversible processes (such as radiation of
heat), both the specific entropy 7 and the Absolute salinity S, of each fluid
parcel is constant following the fluid motion so that the right-hand side of the
FTR, Eqn. (B.6), is zero and the material derivative of internal energy satisfies
du/dt = —(p+F,))dv/dt so that the internal energy changes only as a result of the
work done in compressing the fluid parcel. Realizing that v=p~' and using the
continuity Eqn. (A.8.1) in the form dp/ds + pV-u =0, du/d¢ can be expressed in
this situation of no molecular, radiative or boundary fluxes as
du/dt = —p™ (p+PF)V-u. Adding this equation to the inviscid, non-dissipative
version of the mechanical energy equation, Eqn. (B.12), gives

(pE )t +V-(puE) = pdE /dt = —Vo([p+PO]u) , no molecular fluxes (B.13)
where the total energy

F=u+luu+® (B.14)

is defined as the sum of the internal, kinetic and gravitational potential energies.

Note that this is the first variable that we have considered so far which has
the right-hand side being the divergence of a flux. This was not true of the
gravitational potential energy, Eqn. (B.8), it was not rue of the kinetic energy
equation, (B.10), and it was not true of the sum of the kinetic and gravitational
potential energies, Eqn. (B.12). Note that the divergence-as-right-hand-side is
not true of either (B.8), (B.10) or (B.12), even for flows without molecular fluxes.
That fact that we have now found a variable, Z, whose evolution equation
(B.13) has a right-hand-side which is the divergence of something in this
adiabatic isohaline limit is extremely important. For example, if we substitute
enthalpy # for internal energy u in the quantity Z', we lose this property.

Conservation equation for total energy in the presence of molecular
fluxes

Now, following section 49 Landau and Lifshitz (1959) we need to consider how
molecular fluxes of heat and salt and the radiation of heat will alter the
simplified conservation equation of total energy (B.13). The molecular viscosity
gives rise to a stress in the fluid represented by the tensor ¢, and the interior
flux of energy due to this stress tensor is u-6 so that there needs to be the
additional term —-V-(u-0) added to the right-hand side of the total energy
conservation equation. Consistent with Eqn. (B.9) above we take the stress
tensor to be 6=—pv"™*Vu so that the extra term is V~(vaiS°V%[u~u]). Also
heat fluxes at the ocean boundaries and by radiation F® and molecular
diffusion FQ necessitate the additional terms —V-F® —V.FQ. At this stage we
have not specified the form of the molecular diffusive flux of heat F? in terms of
gradients of temperature and Absolute Salinity; this is done below in Eqn. (B.24).
The total energy conservation equation in the presence of molecular, radiative
and boundary fluxes is

(pZ) +V-(puZ) = pdZ/dt = -V-([ p+F, |u)-V-F* -V F®
+V~(vaiS°V%|:u-u]).

The right-hand side of the Z conservation equation (B.15) is the divergence of a

(B.15)

flux, ensuring that total energy Z is both a “conservative” variable and an
“isobaric conservative” variable (see appendix A.8 for the definition of these
characteristics).
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Two alternative forms of the conservation equation for total energy

Another way of expressing the total energy equation (B.15) is to write it in a
quasi-divergence  form, with the temporal derivative being of
pE = p(u+%u~u+d)) while the divergence part of the left-hand side is based
on a different quantity, namely the Bernoulli function®B = h+Ju-u+®. This
form of the total energy equation is

(pZ) +V:(puB) =-V-F*-V.F° +V-(vaiS°V%[ll-ll]) . (B.16)

In an ocean modelling context, it is rather strange to contemplate the energy
variable that is advected through the face of a model grid, B , to be different to
the energy variable that is changed in the grid cell, Z . Hence this form of the
total energy equation has not proved popular.

A third way of expressing the total energy equation (B.15) is to write the
left-hand side in terms of only the Bernoulli function B = A+Ju-u+® so that
the prognostic equation for the Bernoulli function is

pB) +V-(puB)=pdB/dt =P -V -F* -V.FC+V . [pv"*V1lu-u|). (B.17)
t t 2

When the flow is steady, and in particular, when the pressure field is time
invariant at every point in space, this Bernoulli form of the total energy equation
has the desirable property that B is conserved following the fluid motion in the
absence of radiative, boundary and molecular fluxes. Subject to this steady-state
assumption, the Bernoulli function B possesses the “potential” property. The
negative aspect of this B evolution equation (B.17) is that in the more general
situation where the flow is unsteady, the presence of the P, term means that the
Bernoulli function does not behave as a conservative variable because the right-
hand side of (B.17) is not the divergence of a flux. In this general non-steady
situation B is “isobaric conservative” but is not a “conservative” variable nor
does it posses the “potential” property.

Noting that the total energy Z is related to the Bernoulli function by
F =B - (p+R)/p and even if we take the whole ocean to be in a steady state
so that B has the “potential” property, it is clear that Z does not have the
“potential” property in this situation. That is, if a seawater parcel moves from
say 2000 dbar to O dbar without exchange of material or heat with its
surroundings and with P =0 everywhere, then B remains constant while the
parcel’s total energy £ changes by the difference in the quantity — (p+£)) / p
between the two locations. Hence we conclude that even in a steady ocean
does not possess the “potential” property. This means that total energy T is
useless as far as being a marker of fluid flow.

When the viscous production term V~(vaiS°V%[u-u]) in the above
equations is integrated over the ocean volume, the contribution from the sea
surface is the power input by the wind stress 7, namely the area integral of

surf surf

T-u where uw” is the surface velocity of the ocean.

Obtaining the First Law of Thermodynamics by subtraction

The evolution equation (B.12) for the sum of kinetic and gravitational potential
energies is now subtracted from the total energy conservation equation (B.15)

giving
(pu) +V-(puu)= pdu/dt =—(p+F)V-u =V-F* =V-F + pe. (B.18)

Using the continuity equation in the form pdv/d¢ =V-u and the Fundamental
Thermodynamic Relation (B.6), this equation can be written as
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dh  dP du dv dn ds,
——v—| = —+|pt+E)— | = T+t)—+u—=
p[dt dej p(dr (p O)dtJ p[(o )dt ‘udtj

= —V-F*-V-F?+ pe

(B.19)

which is the First Law of Thermodynamics.

The corresponding evolution equation for Absolute Salinity is (Eqn.
(A.21.8))
ds, S s
p=gt = (pS,), + V-(pus,) = ~V-F 4 pS°, (A21.8)
where F® is the molecular flux of salt and p S %A is the non-conservative source
of Absolute Salinity due to the remineralization of particulate matter which we
are going to ignore in this course. Hence, in this course we take the salt
evolution equation to be

ds
(pSA),+V'(P“SA) = pd—tA =-V.-F® |, approximate (A.21.8a)

For many purposes in oceanography the exact dependence of the molecular
fluxes of heat and salt on the gradients of Absolute Salinity, temperature and
pressure is unimportant, nevertheless, Eqns. (B.23) - (B.27) below list these
molecular fluxes in terms of the spatial gradients of these quantities.

At first sight Eqn. (B.19) has little to recommend it; there is a non-
conservative source term pe on the right-hand side and even more worryingly,
the left-hand side is not p times the material derivative of any quantity as is
required of a conservation equation of a conservative variable. It is this aspect of
the left-hand side of the First Law of Thermodynamics, namely the presence of
the —dP/d: term that has scared oceanographers and held up thermodynamic
progress for a century.

In summary, the approach used here to develop the First Law of
Thermodynamics seems rather convoluted in that the conservation equation for
total energy is first formed, and then the evolution equations for kinetic and
gravitational potential energies are subtracted. ~Moreover, the molecular,
radiative and boundary fluxes were included into the total energy conservation
equation as separate deliberate flux divergences, rather than coming from an
underlying basic conservation equation. This approach is adopted for the
following reasons. First this approach ensures that the molecular, radiative and
boundary fluxes do enter the total energy conservation equation (B.15) as the
divergence of fluxes so that the total energy £ = u + Ju-u+ @ is guaranteed to
be a conservative variable. This is essential. Second, it is rather unclear how one
would otherwise arrive at the molecular fluxes of heat and salt on the right-hand
side of the First Law of Thermodynamics since the direct approach which was
attempted involved the poorly defined (and obnoxious) “rate of heating” dq/dt
and did not lead us to the First Law.
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Expressions for the molecular fluxes of heat and salt

The molecular fluxes of salt and heat, F° and FQ, are now written in the
general matrix form in terms of the thermodynamic “forces” V(—,u/T ) and
V(l/ T ) as
FS = AV(-u/T) + BV(YT), (B.21)
FQ = BV(-u/T) + CV()T), (B.22)

where 4, B and C are three independent coefficients. The equality of the off-
diagonal diffusion coefficients, B, results from the Onsager (1931a,b) reciprocity
relation. =~ When these fluxes are substituted into the First Law of
Thermodynamics Eqn. (B.19) and this is written as an evolution equation for
entropy, the Second Law constraint that the entropy production must be
positive requires that 4 > 0 and that C > B2/ 4.

The part of the salt flux that is proportional to —VS§, is traditionally written
as —pk°VS , implying that 4 = pk°T / K, - The molecular fluxes of salt and
heat, F° and F?, can now be written in terms of the gradients of Absolute
Salinity, temperature and pressure in the convenient forms

S
F = —pk| s, + Heyp| - [PET(H) By, (B.23)
5, us, \7), 1
2 Bu Bu
FQ = —% c-Blvr «+ —SSAFS = —pc k'VT + —SSAFS, (B.24)
T A pk°T r pk°T

where the fact that C > B/ 4 has been used to write the regular diffusion of
heat down the temperature gradient as — pcka VT where k" is the positive
molecular diffusivity of temperature. These expressions involve the (strictly
positive) molecular diffusivities of temperature and salinity (k” and &°) and
the single cross-diffusion parameter B. The other parameters in these
equations follow directly from the Gibbs function of seawater.

It is common to introduce a “reduced heat flux” by reducing the molecular
flux of heat by 9/4/dS A‘T FS = ( u— T,LLT)FS, being the flux of enthalpy due to
the molecular flux of salt. This prompts the introduction of a revised cross-
diffusion coefficient defined by

S3
B =B+ ”"—T[ﬁ] , (B.25)
bs, \T);

and in terms of this cross-diffusion coefficient Eqns. (B.23) and (B.24) can be

written as
P = —pk8| s, + Hevp| - Byr B.26
= —-p Lt - 2 , (B.26)

SA
and

4

Bu
—pe kTVT + — A FS
’ pk°T

FO— (u~Tp, )F°

Hs

A

o (B.27)
u
— pc KTVT - —S’A{VSA + ﬁVPJ,

» T

where K, defined by pcpKT = pcka + B’z/ (AT 2), is a revised molecular
diffusivity of temperature.

The term in (B.26) that is proportional to the pressure gradient VP
represents “barodiffusion” as it causes a flux of salt down the gradient of
pressure. The last term in (B.26) is a flux of salt due to the gradient of in situ
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temperature and is called the Soret effect, while the last term in the second line
of Eqn. (B.27) is called the Dufour effect.

If the ocean were in thermodynamic equilibrium, its temperature would be

the same everywhere, as would the chemical potentials of water and of each
dissolved species; see Eqns. (B.21) and (B.22). Such a situation with FQ = F°* =0
would have entropy and the concentrations of each species being functions of

pressure. Turbulent mixing acts very differently, tending to homogenize the
concentration of each species and to make entropy constant, but in the process
causing gradients in temperature and in the chemical potentials as functions of
pressure. That is, turbulent mixing acts to maintain a non-equilibrium state.
This difference between the roles of molecular versus turbulent mixing results
from the symmetry breaking role of the gravity field; for example, in a
laboratory without gravity, turbulent and molecular mixing would have
indistinguishable effects.

Reference states

The Gibbs function g(S aols p) contains four arbitrary constants that cannot be
determined by any set of thermodynamic measurements. These arbitrary
constants mean that the Gibbs function is unknown and unknowable up to the
arbitrary function of temperature and Absolute Salinity (where 7, is the Celsius
zero point, 273.15 K))

a,+ a,(T,+1) + a8, +a,(T,+1)S, . (2.6.2)

This is equivalent to saying that both enthalpy # and entropy 71 are unknown
and unknowable up to linear functions of Absolute Salinity; enthalpy is
unknown up to @, + a, S, and entropy is unknown up to —a, - @, S, .

There are no known or conceivable experiments that could possibly
constrain these four arbitrary numbers. By the same token, there can be no
conceivable consequences to any arbitrary choice that is made for these four
numbers.
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Now we can play

So we’'ve spent 25 pages of lecture notes deriving the Fundamental
Thermodynamic Relation and the First Law of Thermodynamics. Now it’s time
to play. Here is a revision of our underlying equations.

The Continuity Equation is

p,+V-(pu)=01. (A21.2)

The Fundamental Thermodynamic Relation is

du+(p+B)dv = di—vdP = (7, +¢)dn+ pds, |. (A.7.1)

The First Law of Thermodynamics is

dh drP du dv dn ds
——v— | = p|—+(ptR)— | = T +t)—+u—=
p[dt dej p(dr (p O)dtJ p[(o )dt ‘udtj

= —V-F*-V-F%+ pe

. (B.19)

The conservation equation of Absolute Salinity is

ds
(pSA),+V'(P“SA) = pd—tA =-V.-F® |, approximate (A.21.8a)

The definition of the Gibbs function

g(S,.T.P)=g=h-Tn =u+Pv—-Tn|. (definition_of_g)

We will concentrate on the parts of these equations that involve enthalpy #
(rather than internal energy u), that is, we will concentrate on the red parts of
the equations.

The above equations have several variables appearing in more than one
equation (especially when you realize that p=v""), but the Gibbs function
appears in just the last equation, so why bother with it? The answer is that it is
the Gibbs function that defines the fluid. That is, we have an internationally
defined and accepted algorithm for g(S A p), and all the other thermodynamic
variables are actually not separate quantities but are actually various derivatives
of the Gibbs function.

Enthalpy is “isobaric conservative”

There is an important consequence of the First Law that is really easy to derive,
and its too beautiful to delay discussing, so we will do so right away. The First
Law of Thermodynamics can be put in divergence form by invoking the
continuity equation, giving

(ph), + V-(puh) - % = -V-F*-V-F+ pe . (A.13.2)

An important consequence of Eqn. (A.13.2) is that when two finite sized parcels
of seawater are mixed at constant pressure and under ideal conditions, the total

amount of enthalpy is conserved. To see this, integrate over the volume that
encompasses both fluid parcels while assuming there to be no radiative,
boundary or molecular fluxes across the boundary of this control volume. This
control volume may change with time as the fluid moves (at constant pressure),
mixes and contracts. The dissipation of kinetic energy by viscous friction pe is
commonly ignored during such mixing processes but in fact the dissipation term
does cause a small increase in the enthalpy of the mixture with respect to that of
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the two original parcels, and it is easy to include it. Apart from this non-
conservative source term, pe, under these assumptions Eqn. (A.13.2) reduces to
the statement that the volume integrated amount of p#h is the same for the two
initial fluid parcels as for the final mixed parcel, that is, the total amount of
enthalpy is unchanged.

This result of non-equilibrium thermodynamics (it is non-equilibrium
because of the finite size of the parcels and the finite property differences) has
been known since the days of Gibbs in the nineteenth century, and it is of the
utmost importance in oceanography. The fact that enthalpy is conserved when
fluid parcels mix at constant pressure is the central result upon which all of our
understanding of “heat fluxes” and of “heat content” in the ocean now rests.

As important as this result is, it does not follow that enthalpy is the best
variable to represent “heat content” in the ocean. Enthalpy is actually a very
poor representation of “heat content” in the ocean because it does not posses the
“potential” property. It will be seen that potential enthalpy 4’ (referenced to
zero sea pressure) is the best thermodynamic variable to represent “heat
content” in the ocean.
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Review of the past couple of lectures

The left-hand side of the First Law of Thermodynamics is identical to one of the
three parts of the Fundamental Thermodynamic Relation,

dh  dP du dv dn ds,
——v— /| =p|—+(p+B)— | = p| (T, +t)—"+u—=2
p[dz Vdrj p[dr (» O)dt] p((o )dt udr]

but the right-hand side of the First Law of Thermodynamics contains the
physical processes that affect the “heat-like” variables u, # and 7 that appear on
the left-hand side. These physical processes are minus the divergences of the

~

(B.6)

fluxes of heat by radiation and by molecular diffusion plus the dissipation of
kinetic energy into “heat”.

We learnt that the way to derive the First Law of Thermodynamics is a bit
torturous. One must first develop the conservation equation for Total Energy
T =u+luu+® and then one subtracts off the evolution equation for
lu-u+®. What is left is the First Law of Thermodynamics. This is the only
way of deriving the First Law of Thermodynamics even for a pure substance
(like freshwater) and it is especially obvious that this is the only viable route
when the fluid is not a pure substance (e.g. seawater which is pure water plus
sea-salt in solution).

We then looked at the form of the molecular fluxes of salt and heat
s V(-u/T
P[4 5] V(sT) ) (B.21, B.22))
FQ B CJ|v(/7)

and examined the constraints on 4, B and C required to ensure that entropy is
never destroyed.

We then looked at the First Law of Thermodynamics, namely

dh  dP du dv dn ds,
——v—| = —+|p+E)— | = To+t)—+u—=
p[dr dej p(dr (p O)dZJ p[(o Va “dtj . (B.19)

= —V-F*-V-F%+ pe

and were able to show that when turbulent mixing occurs between two fluid
parcels, enthalpy is conserved (apart from the heating caused by any dissipation
of kinetic energy pe ). This is true because for fluid parcels to mix they have to
be at the same physical location and therefore at the same pressure. This
“isobaric conservative” nature of enthalpy is the most important consequence of
the First Law of Thermodynamics for a turbulent fluid such as the atmosphere
and the ocean. However enthalpy has another drawback that makes it an
undesirable variable; it varies quite strongly with pressure, even for an adiabatic
and isohaline change in pressure. We will find that a new variable that is based
on enthalpy, namely potential enthalpy, is a much better variable for
representing the “heat content” per unit mass of seawater.
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“isohaline”, “adiabatic” and “isentropic”; reversible and irreversible
processes

The adjective “isohaline” means “at constant salinity” and describes a
process in which the Absolute Salinity of a fluid parcel is constant because
~ V-F® is zero.

The adjective “adiabatic” is traditionally taken to mean a process during
which there is no exchange of heat between the environment and the fluid parcel
one is considering. However, with this definition of “adiabatic” it is still
possible for the entropy 7, of a fluid parcel to change during an isohaline and
adiabatic process (see Eqn. (B.19)). This is because the dissipation of mechanical
energy € causes an increase in 7.

dh  dP du dv dn ds,
——v—| = —+|p+E)— | = To+t)—+u—=
p[dr dej p(dr (p O)dZJ p[(o Fa “dtj . (B.19)

= V- F*-V-F%+ pe

While the dissipation of mechanical energy is a small term whose influence is
routinely neglected in the First Law of Thermodynamics in oceanography, it
seems advisable to modify the meaning of the word “adiabatic” in
oceanography so that our use of the word more accurately reflects the properties
we normally associate with an adiabatic process. Accordingly the word
“adiabatic” in oceanography is taken to describe a process occurring without
exchange of heat and also without the internal dissipation of mechanical energy.
With this definition of “adiabatic”, a process that is both isohaline and adiabatic
does imply that the entropy 7 is constant, that is, it is an “isentropic” process.

With this definition of “adiabatic”, an “adiabatic and isohaline” process, is
identical to an “isentropic and isohaline” process. Often such a process is simply
described as being simply “isentropic”. However, it is possible to have an
isentropic process in which there are changes in both temperature and in
Absolute Salinity in just the right proportion to achieve no change in entropy.
Hence one needs to say “adiabatic and isohaline” or “isentropic and isohaline”;
two constancies are required, not one.

A reversible thermodynamic process must entail no change in entropy or
salinity during the process, and no dissipation of mechanical energy. That is, a
reversible thermodynamic process must have F* = FX = F¢=¢ =0. A slow
change in the pressure of a fluid parcel may occur during a reversible process
while FS = FR=Fe=¢ =0. If any of FS, F}®, FQ or & are non-zero, the
processes is irreversible. The most common reversible processes is an adiabatic
and isohaline change of pressure such as occurs during the vertical heaving
motion of an internal gravity wave. During such motion both the entropy and
the Absolute Salinity of the parcel are constant. Molecular diffusion of heat and
salt are examples of irreversible processes, as are turbulent mixing processes.
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potential temperature of seawater

Potential temperature 6 is the temperature that a fluid parcel would have if its
pressure were changed to a fixed reference pressure p, in an isentropic and
isohaline (and hence, reversible) manner. For a fluid parcel (S Aol p) at pressure
p the following thought experiment is conducted. You wrap the fluid parcel in
an insulating plastic bag and then you slowly move it to a different location
where the pressure is p . The parcel experiences the changing pressure during
this movement. When the parcel arrives at p. you put a thermometer into the
parcel and measure its in situ temperature at p, . This temperature is called the
parcel’s potential temperature.

Potential temperature referred to reference pressure p, is often written as
the pressure integral of the adiabatic lapse rate (Fofonoff (1962), (1985))

P
6 =6(S,tp.p,) =1+ 1[ r(S,.0[Sy.t.p.0' |07 P, (3.1.1)

where I' = at/aP‘S . is the rate at which in situ temperature changes with
pressure at fixed entropy and salinity.

The algorithm that is used in the TEOS-10 code to evaluate potential
temperature 8 equates the specific entropies of two seawater parcels, one before
and the other after the isentropic and isohaline pressure change. In this way, 6
is evaluated using a Newton-Raphson type iterative solution technique to solve
the following equation for &

n(S..6.p,) = 1(S,.1.p). (3.12)
or, in terms of the Gibbs function, g,
— 27 (84.6.p,) = = g7 (Sast, ). (3.1.3)

This relation is formally equivalent to Eqn. (3.1.1).

In equating the specific entropies of the seawater parcel at the two different
pressures in Eqn. (3.1.2) we are exploiting the fact that in the thought experiment
the slow change in pressure is done isentropically.

Consider now two seawater parcels with the same Absolute Salinities but at
different in situ temperatures and different pressures. If these two seawater
parcels have the same value of specific entropy then the two seawater parcels
must also have the same value of potential temperature 6 at p_ (see Eqn. (3.1.2)
where the right-hand side is the same for the two parcels).
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potential enthalpy

Potential enthalpy #° is the enthalpy that a fluid parcel would have if its
pressure were changed to a fixed reference pressure p, in an isentropic and
isohaline manner. Because heat fluxes into and out of the ocean occur mostly
near the sea surface, the reference pressure for potential enthalpy is almost
always taken to be p, = 0 dbar (that is, at zero sea pressure). The thought
process involved with potential enthalpy is the same as for potential
temperature, namely the parcel is enclosed in an insulating plastic bag and its
pressure is slowly change to p . At this new pressure the parcel’s enthalpy is
calculated, and this is called potential enthalpy.

Now considering specific enthalpy to be a function of entropy (rather than
of temperature ¢), that is, taking h= h(S B p), the Fundamental
Thermodynamic Relation (FTR, Eqn. (A.7.1)) becomes

h,dn + hy, dS, + h,dP —vdP = (T, +1)dn + pds, . (A.11.4)

For an isentropic and isohaline process during which dn =dS, =0, this equation
reduces to &, = on/ E)P'S = v which allows us to simplify Eqn. (A.11.4) to
AT

hydn + hg dS, = (T, +1)dn + udS,  while ai;/ap[w =v, (A.11.4)

Also, from the previous section we know that if S, and 7n are constant, then so
is potential temperature 6 . Hence we also know that

ohfoR,  =v. (A.11.6)
A

Since we also know that g, =v we can note that

ah/aP‘SAﬁ: v = ag/aP‘SA’T. (v=gp=f~zP=hp=sz)

Potential enthalpy 4° can be expressed as the pressure integral of specific
volume as

W (S,.t.p) = h(S,.6.0) = h°(S,.6) = h(S,.t.p) - If V(SA’Q(SA’t’p’p,)’p/) ar

L
P

= h(S,.t.p) - ;[ v(S,.m.p") dP’
0 (3.2.1)

,
= h(S,.t.p) = | 5(S,.0.p") dP’

Ry
P
= h(S,.t.p) - | 9(8,.0,p") aP’,

0
and we emphasize that the pressure integrals here must be done with respect to
pressure expressed in Pa rather than dbar. In this equation we have introduced
the over-tilde, over-hat etc. which we will use to indicate the functional
dependence of a variable; see the list of Nomenclature that has been distributed.
Note that in the first line of the above equation, specific volume v is a function
of (SA,t,p) while O(SA,t,p,p’) (see Eqn. (3.1.1)) is the potential temperature of
parcel (S ,t,p) with respect to the reference pressure p’.

In terms of the Gibbs function, potential enthalpy 4° is evaluated as

B (Su,t,p) =h(S,,0,0)= g(S4,6,0) —(T,+ 0)g;(S,,6,0). (32.2)
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Conservative Temperature

Conservative Temperature © is defined to be proportional to potential enthalpy,
-6 _ 30 0_ 70 0

O(S,.t.p) = 6(S,.0) = K°(S,.t.p)/) = i°(S,.0)/c (33.1)
where the value that is chosen for cg is motivated in terms of potential enthalpy
evaluated at an Absolute Salinity of S, =35u,,=35.16504 gkg™ and at

6 =25°C by
[ (S50 25°C, 0) = h (S50, 0°C, 0) ]

(25 K)

~ 3991.867 95711963 Jkg'K™', (3.3.2)

noting that /(Sy,, 0 °C, Odbar) is zero according to the way the Gibbs function is
defined. We adopt the exact definition for cg to be the 15-digit value in (3.3.2),
so that

c) = 3991.867 95711963 Tkg 'K ™. (3.3.3)

The value of cg in Eqn. (3.3.3) is very close to the average value of the

specific heat capacity ¢, at the sea surface of today’s global ocean. This value of
cg also causes the average value of #—0 at the sea surface to be very close to

zero. Since cg is simply a constant of proportionality between potential
enthalpy and Conservative Temperature, it is totally arbitrary.
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potential temperature of a perfect gas

An ideal gas obeys

Pv = RT (Perfect_Gas_A)
where R is the universal gas constant R~287Jkg™' K™'. For an adiabatic
change in pressure (this also being an isentropic processes) the Fundamental
Thermodynamic Relation tells us that di =vdP. For an ideal gas, specific
enthalpy /4 is equal to ¢5°T where ¢;® =ZR = 1004.5] kg™ K™ for a diatomic
gas. Hence for a perfect gas we have

cianT = ZRdT = R—;dP or d(InT) = 2d(InP). (Perfect_Gas_B)
Performing the adiabatic change in pressure from P to F, gives

TO+9

T, +1

fy fy
d(InT) = 2|d(InPYy
JanTy = 3[dmpy o -

PY
- | 2o (Perfect_Gas_C)

specific entropy of a perfect gas
Now consider a more general situation where the parcel of perfect gas does
exchange heat with its surroundings, then the Fundamental Thermodynamic

Relation
dh—vdP = (T,+t)dn (A7.1)
shows that
dn = cfj‘sd—T _rY _ cEd(In[ Ty +1]) — 2¢5°d(In P)
Ty +t P (Perfect_Gas_D)
= ¢=d(In[ T, +6)).

Hence for a perfect gas, specific entropy is simply proportional to the natural
logarithm of potential temperature (absolute potential temperature),

n = c;fas 1n[TO +9] + constant

Perfect_Gas_E)
= ¢ In[1+6/T, ], (

where the constant is defined so that entropy is zero at a Celsius temperature of
0°C (see Eqn. (J.6) and (J.7) of IOC et al. (2010)).

The enthalpy of a perfect gas (e.g. dry air) is also defined to be zero at a
Celsius temperature of 0°C, so the potential enthalpy of a perfect gas is
" =c§“9 and if a “conservative temperature of a perfect gas” were to be
defined, then it would be equal to potential temperature 6 .

An approximate specific entropy of seawater

One wonders how accurate a correspondingly simple logarithm expression
would be for the entropy of seawater, defined by either cg ln[TO +9:| + constant
or cg ln[TO +®:| + constant . The constants can be chosen so that it makes the
estimate of entropy zero if 6 =0°C or ©® =0°C in the two cases respectively
since entropy is defined to be zero for Standard Seawater (S, =Sy, ) at these
temperatures. Hence we try the two approximations

cg ln[l +0/ T, :| , (approx_entropy_pt)
and

cg ln[l +0/ To:l . (approx_entropy_CT)
The figures below show the difference between these approximate expressions
and the specific entropy of seawater, and each plot has been divided by

ﬁ(35.16504 gk, 25°c)

13.983265450613318 T kg 'K =
25K

, (scaling_factor)
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(i.e. essentially 14 J kg™'K™) in order to express the error in the approximation
in temperature units.

It is seen that the expression involving Conservative Temperature,
cE ln[1+®/ TO], is a better approximation to entropy than is the one involving
EOtentlél temperatu.re, cg 1n[1+9/ To:l N : water

pproximately four times as large as the specific heat capacity of air, ;™).

(Note that for seawater, ¢’ is

Error in approximating entropy when
using potential temperature

Error in approximating entropy when
using Conservative Temperature
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Can we understand the relative performance of these two approximate
expressions? Starting from the Fundamental Thermodynamic Relationship

dh—vdP = (T,+¢)dn + udS, , (A7.1)

we consider this differential relationship at the fixed pressure of p =0 dbar
where the in situ temperature is equal to the potential temperature 8, so the FTR
becomes

9d® = (T,+6)dn + u(S,.6.0)ds, , (d_entropy_1)

or
< u(S,.,6,0)
_ P _ A
dn = (TO+9) (To"'e) A (d_entropy_2)
or
(]10-'_@) 0 lu(SAaG:'O)
= 7(T +9) ¢, d(ln[%+®]) - WdSA. (d_entropy_3)
0 0

This is the relevant differential expression for entropy in terms of ©.

Now to develop the corresponding expression in terms of 8 we go back to
the FTR, Eqn. (A.7.1), evaluated at p =0 dbar in the form

¢,(85,,0.0)d0 + hg (5,,6,0)dS, = (T,+6)dn +u(S,.0,0)dS,.  (d_entropy_4)

Since h= g —Tg, it follows that hSA =g, ~ T g7 = K- Tu, so we can rewrite

this last equation as

dn = c,(8,.0.0)d(n[ T, +6 ) - u,(5,.6,0)ds, |

(d_entropy_5)

Our approximate straw-men expressions for entropy, namely cg ln[l +0/ To:l
and cE ln[1+ e/ To:l , amount to ignoring the dependence of entropy on Absolute
Salinity in the above boxed equations, as well as

(i) in the case of 6, approximating ¢, (S A,Q,O) as ¢, and

(ii) in the case of ©, approximating (To + @) / <To +0) by unity.

The specific heat capacity cp(S A,Q,O) varies by 5.5% in the ocean whereas the

ratio (To+®)/ (TO +0) varies by no more than 0.67%, and this goes some way
.. . . 0

towards exploammg why the approximate expression 1 ~c, ln[l+®/ T0:|

outperforms c, ln[1+ 6/ To:l by a factor of about 15.
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