UTLS Asian monsoon anticyclone

- Dynamics and transport in the monsoon anticyclone
- Chemical variability linked to the monsoon
- Instability and eddy shedding; PV diagnostics
- Transport to stratosphere
- Eruption of Mt. Nabro in June 2011

What is the monsoon anticyclone, and why is it interesting?

- dominant circulation feature of NH summer UTLS
- forced by deep convection over India and Bay of Bengal
- associated with local maxima in trace constituents (water vapor, ozone, pollutants)
- active region for stratospheretroposphere coupling

monsoon circulation near 16 km

MLS satellite

Dynamical Background

Cyclone at the surface, anticyclone in the upper troposphere

atmosphere response to steady tropical heating (Gill, 1980)

idealized vertical structure

Highwood and Hoskins (1998)

Anticyclones in the Upper Troposphere

Matsuno-Gill Solution

Anticyclonic circulation extends into lower stratosphere

balanced dynamical structure

Randel and Park, JGR, 2006

Confinement within the anticyclone: idealized transport experiments

• initialize 2400 particles inside anticyclone

 advect with observed winds for 20 days

• test different pressure levels

transport simulation at 150 hPa

day 0

day 10

large fraction remain inside anticyclone

tests at different pressure levels show that confinement mainly occurs over altitudes with strongest winds

~ 10-18 km

Frequent tropopause-level cirrus clouds in monsoon region

60N 52.0 42.0 30N 32.0 8 22.0 Cldfrac EQ **30S** 12.0 2.0 60S 60E 120E 180 120W 60W 0 0

CALIPSO cloud fraction near 16 km

CALIPSO satellite lidar cloud observations

Asian monsoon <u>aerosol layer</u> near 16 km

strong chemical influence on summer UTLS

Park et al, JGR, 2008, 2009

ACE Fourier Transform Spectrometer

Low latitudes: 4 samples / year

All observations for June-August

Clerbaux et al, ACP, 2008

ACE measurements JJA 2004-2006

High CO and HCN are associated with the Asian monsoon anticyclone

ACE-FTS CO Profiles

enhancement

inside the

anticyclone

other tropospheric (pollution) tracers

 C_2H_2 measurements from ACE-FTS satellite

photochemical lifetime ~ 2 weeks

evidence of relatively rapid transport to the UTLS

Atmos. Chem. Phys., 10, 3965–3984, 2010 www.atmos-chem-phys.net/10/3965/2010/ © Author(s) 2010. This work is distributed under the Creative Commons Attribution 3.0 License.

Aircraft measurements

Characterization of non-methane hydrocarbons in Asian summer monsoon outflow observed by the CARIBIC aircraft

A. K. Baker¹, T. J. Schuck¹, F. Slemr¹, P. van Velthoven², A. Zahn³, and C. A. M. Brenninkmeijer¹

Result: air is relatively young: ~ 4-12 days

Baker et al, ACP, 2011

chemical transport models can simulate observed large-scale behavior

Park et al, JGR, 2009

simulation for one day

100 hPa

MLS observations

MOZART simulation

Park et al, JGR, 2009

Vertical structure of CO from model simulation

Questions:

- How sharp is the 'chemical edge'?
- When and where does air 'escape' the anticyclone?

monsoon influences are also evident in lower stratosphere water vapor

Transport pathways derived from observations and models

Park et al, JGR, 2008, 2009

confinement by anticyclone + transport to stratosphere Transport above 200 hPa by convection / circulation convective transport (main outflow near 200 hPa) surface emission (India and Southeast Asia)

Key points:

- Asian monsoon anticyclone is dynamical response to monsoon convection (heating)
- Climatological feature every year ~June-September
- cold tropopause, frequent clouds, aerosol layer
- Strong chemical anomalies inside anticyclone, due to:
 - ✓ Rapid transport from surface (evidenced by short-lived chemical species)
 - ✓ Circulation traps air inside anticyclone

Garney and Randel 2015

Comparison of trajectory calculations with MLS CO climatology

Three-dimensional diabatic trajectories

Monsoon circulation is inherently unstable

Hsu and Plumb 2000 JAS

'eddy shedding' from monsoon circulation

Anticyclone viewed in potential vorticity

Dynamic variability of the Asian monsoon anticyclone observed in potential vorticity and correlations with tracer distributions

H. Garny¹ and W. J. Randel² JGR 2013

following Popovic and Plumb, 2001

animation of daily PV maps for one summer

May 1 - September 30, 2006

Day 1 = May 1 32 June 1 62 July 1 93 Aug 1 123 Sept 1

Dynamical variability echoed in tracers

PV at 360 K

CO from Aura MLS

PV at 360 K - Day 42

CO and PV at 360 K - Day 42

PV at 360 K - Day 44

CO and PV at 360 K - Day 44

Garney and Randel, 2013, JGR

Another example

PV at 360 K

PV at 360 K - Day 121

PV at 360 K - Day 123

CO and PV at 360 K - Day 119

90F

60F

120F

150F

CO and PV at 360 K - Day 123

Transport to the stratosphere via the monsoon anticyclone

WACCM simulation of HCN

JJA

- climatological emission sources
- parameterized ocean sink

HCN 'tape recorder' from ACE-FTS measurements

PARK ET AL.: HYDROCARBONS FROM ACE-FTS AND WACCM4 JGR, 2013

Key points:

- Trajectory studies show fate of convective outflow (up and down)
- Fundamental instability of anticyclone: eddy shedding
- HCN provides evidence for monsoon transport to stratosphere

Eruption of Mt. Nabro June 13, 2011

Eritria, Africa

Primary eruption was to middle / upper troposphere (~10-16 km) (and small amount to stratosphere, above 18 km)

Stratospheric aerosols from OSIRIS satellite

Bourassa et al, 2012

July 6

July 11

Bourassa et al, 2012

July 16

July 26

July 21

July 31

Interpretation:

- Nabro SO₂ plume in upper troposphere, transported around ٠ monsoon circulation to eastern side.
- Transport to stratosphere through monsoon circulation (and convection?) •
- Confined to anticyclone, converted to stratospheric • sulfate aerosol ~ 1 month
- Further evidence of transport to lower stratosphere via monsoon ٠ (Nabro in right place at right time)

July 6

July 1: 18 days after eruption

30

532 nm Total Attenuated Backscatter, km⁻¹ sr⁻¹ UTC: 2011-07-01 19:21:10.4 to 2011-07-01 19:34:39.0 Version: 3.01 Nominal Nighttime

532 nm Total Attenuated Backscatter, km⁻¹ sr⁻¹ UTC: 2011-07-17 20:59:19.4 to 2011-07-17 21:12:48.1 Version: 3.01 Nominal Nighttime 30 -1.0x10⁻¹ 9.0 8.0 7.0 6.0 Nabro aerosols 25 5.0 4.0 3.0 2.0 1.0x10⁻² -20 km 20 8.0 7.5 7.0 6.5 5.5 5.0 4.5 4.0 3.5 2.5 2.0 1.5 1.0x10⁻³ 9.0 8.0 7.0 6.0 5.0 4.0 4.0 4.0 2.2 Altitude, km -15 km 15 -10 5 -0 1.0x10-4 33.95 75.06 21.78 71.96 Lat 57.98 52.04 46.04 40.01 27.87 15.67 9.61 81.37 73.44 70.56 Lon 84.45 78.91 76.85 69.23

Ongoing research:

- What are the contributions of different chemical source regions to the upper troposphere? Is reactive chemistry important? How much reactive nitrogen is in the anticyclone?
- When and where does air escape the anticyclone? Are there sharp gradients across edges?
- What is the role of deep convection vs. large-scale upward circulation to the stratosphere? How important are diurnal variations in convection over Tibet?
- What is the nature of the tropopause aerosol layer? Does it influence UTLS clouds?

Thank you

200 hPa streamfunction JJA

A Model of the Asian Summer Monsoon. Part I: The Global Scale

JAS 1995

BRIAN J. HOSKINS AND MARK J. RODWELL

diabatic heating from reanalyses

Result: heating from convection mainly forces monsoon anticyclone